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Abstract

Understanding human navigation behavior has implications for a wide range of application
scenarios. For example, insights into geo-spatial navigation in urban areas can impact
city planning or public transport. Similarly, knowledge about navigation on the web can
help to improve web site structures or service experience.
In this work, we focus on a hypothesis-driven approach to address the task of under-

standing human navigation: We aim to formulate and compare ideas — for example
stemming from existing theory, literature, intuition, or previous experiments — based on
a given set of navigational observations. For example, we may compare whether tourists
exploring a city walk “short distances” before taking their next photo vs. they tend to
“travel long distances between points of interest”, or whether users browsing Wikipedia
“navigate semantically” vs. “click randomly”.

For this, the Bayesian method HypTrails has recently been proposed. However, while
HypTrails is a straightforward and flexible approach, several major challenges remain:
i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving
user groups such as tourists and locals is not possible), ii) HypTrails does not support
the user in conceiving novel hypotheses when confronted with a large set of possibly
relevant background information or influence factors, e.g., points of interest, popularity of
locations, time of the day, or user properties, and finally iii) formulating hypotheses can
be technically challenging depending on the application scenario (e.g., due to continuous
observations or temporal constraints). In this thesis, we address these limitations by
introducing various novel methods and tools and explore a wide range of case studies.
In particular, our main contributions are the methods MixedTrails and SubTrails

which specifically address the first two limitations: MixedTrails is an approach for
hypothesis comparison that extends the previously proposed HypTrails method to allow
formulating and comparing heterogeneous hypotheses (e.g., incorporating differently
behaving user groups). SubTrails is a method that supports hypothesis conception by
automatically discovering interpretable subgroups with exceptional navigation behavior.
In addition, our methodological contributions also include several tools consisting of a
distributed implementation of HypTrails, a web application for visualizing geo-spatial
human navigation in the context of background information, as well as a system for
collecting, analyzing, and visualizing mobile participatory sensing data.

Furthermore, we conduct case studies in many application domains, which encompass —
among others — geo-spatial navigation based on photos from the photo-sharing platform
Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing
behavior on a commercial crowdsourcing platform. In the process, we develop approaches
to cope with application specific subtleties (like continuous observations and temporal
constraints). The corresponding studies illustrate the variety of domains and facets
in which navigation behavior can be studied and, thus, showcase the expressiveness,
applicability, and flexibility of our methods. Using these methods, we present new aspects
of navigational phenomena which ultimately help to better understand the multi-faceted
characteristics of human navigation behavior.
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Zusammenfassung

Menschliches Navigationsverhalten zu verstehen, kann in einer Reihe von Anwendungsge-
bieten große Fortschritte bringen. Zum Beispiel können Einblicke in räumliche Navigation,
wie etwa in Innenstädten, dabei helfen Infrastrukturen und öffentliche Verkehrsmittel
besser abzustimmen. Genauso kann Wissen über das Navigationsverhalten von Benutzern
im Internet Entwickler dabei unterstützen, Webseiten besser zu strukturieren oder generell
die Benutzererfahrung zu verbessern.
In dieser Arbeit konzentrieren wir uns auf einen hypothesengetriebenen Ansatz, um

menschliches Navigationsverhalten zu verstehen. Das heißt, wir formulieren und ver-
gleichen Hypothesen basierend auf beobachteten Navigationspfaden. Diese Hypothesen
gründen zumeist auf existierenden Theorien, Literatur, vorherigen Experimenten oder
Intuition. Beispielsweise kann es interessant sein, zu vergleichen, ob Touristen, die eine
Stadt erkunden, eher zu nahegelegenen Sehenswürdigkeiten laufen als vornehmlich große
Strecken zurückzulegen. Weiterhin kann man in Online-Szenarien vergleichen, ob Benutzer
zum Beispiel auf Wikipedia eher semantisch navigieren als zufällig Artikel anzusurfen.

Für diese Szenarien wurde HypTrails entwickelt, ein Bayes’scher Ansatz zum Vergleich
von Navigationshypothesen. Doch obwohl HypTrails eine einfach zu benutzende und sehr
flexible Methode darstellt, hat es einige deutliche Schwachstellen: Zum einen kann Hyp-
Trails keine heterogenen Prozesse modellieren (z.B., um das Verhalten von verschiedenen
Nutzergruppen, wie etwa von Touristen und Einheimischen, zu unterscheiden). Außer-
dem bietet HypTrails dem Benutzer keine Unterstützung bei der Entwicklung neuer
Hypothesen. Dies stellt vor allem in Kombination mit großen Mengen an Hintergrund-
informationen und anderen Einflussgrößen (z.B., Sehenswürdigkeiten, Beliebtheit von
Orten, Tageszeiten, oder verschieden Benutzereigenschaften) eine große Herausforderung
dar. Außerdem kann sich das Formulieren von adäquaten Hypothesen abhängig vom
Anwendungsszenario als schwierig erweisen (z.B. aufgrund von kontinuierlich räumlichen
Koordinaten oder zeitlichen Nebenbedingungen). In dieser Arbeit setzen wir an eben
jenen Problemstellungen an.

Unsere Hauptbeiträge bestehen dabei aus den Ansätzen MixedTrails und SubTrails, die
vor allem die ersten beiden genannten Schwachstellen adressieren: MixedTrails stellt einen
Ansatz zum Vergleich von Hypothesen dar, der auf HypTrails basiert, es aber ermöglicht
heterogene Hypothesen zu formulieren und zu vergleichen (z.B., bei Benutzergruppen mit
unterschiedlichem Bewegungsverhalten). Während SubTrails eine Methode darstellt, die
das Entwickeln neuer Hypothesen unterstützt, indem es die automatische Entdeckung
von interpretierbaren Subgruppen mit außergewöhnlichen Bewegungscharakteristiken
ermöglicht. Weiterhin stellen wir drei weitere Beiträge vor: eine verteilte und hochpar-
allele Implementierung von HypTrails, ein Werkzeug zur Visualisierung von räumlicher
Navigation zusammen mit Hintergrundinformationen, sowie ein System zur Sammlung,
Analyse und Visualisierung von Daten aus dem Bereich des Participatory Sensing.

Schließlich führen wir mehrere Studien in verschiedenen Anwendungsbereichen durch.
Wir untersuchen etwa räumliche Navigation basierend auf Photos der Onlineplattform
Flickr, Browsing-Verhalten der Nutzer auf dem Verschlagwortungssystem BibSonomy,
und das Arbeitsverhalten von Nutzern einer kommerziellen Crowdsourcing-Plattform.
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Dabei entwickeln wir mehrere Ansätze, um mit den Eigenheiten der spezifischen Szenarien
umgehen zu können (wie etwa kontinuierliche räumliche Koordinaten oder zeitliche
Nebenbedingungen). Die Ergebnisse zeigen die Vielzahl von Anwendungsgebieten und
Facetten, in denen Navigationsverhalten analysiert werden kann und illustrieren so die
Ausdrucksstärke, vielseitige Anwendbarkeit und Flexibilität unserer Methoden. Gleich-
zeitig, geben wir neue Einblicke in verschiedene Navigationsprozesse und ermöglichen
so einen wichtigen Schritt hin zum Verständnis der vielfältigen Ebenen menschlichen
Navigationsverhaltens.
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“Positron”) by Carto (under CC BY 3.01) which incorporate data by OpenStreetMap
(under ODbL2).

• The rest of our figures with map material is based on the standard tile layer from
OpenStreetMap ( c©OpenStreetMap contributors under CC BY-SA3).

1https://creativecommons.org/licenses/by/3.0
2https://opendatacommons.org/licenses/odbl
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1. Introduction

Understanding human navigation behavior has been of interest to researchers and practi-
tioners for well over a century: One of the earliest “modern studies” [377] in the area of
geo-spatial navigation is from 1885 by Ravenstein who investigated migration patterns
in several countries using census data [417]. Then, with the significant urban growth
throughout the 20th century [512], understanding human navigation became more and
more important in order to address the challenges arising in urban planning. For example,
there is work related to human navigation with regard to commuting behavior [184], land
use [95], or travel demand [351].

However, human navigation behavior is not restricted to the geo-spatial domain. Rather,
navigation is defined more generally as “The process or activity of accurately ascertaining
one’s position and planning and following a route.”1. This definition also encompasses
navigation on information environments such as text books or library catalogs where
the user browses or searches for information. Understanding human navigation in this
context has become increasingly relevant with the advent of online systems and the world
wide web where users have to find their way through vast amounts of information on
a daily basis. For example, users navigate Wikipedia [519] to find specific information,
browse videos on YouTube [33], or search for products to buy in online shops [112].

At first glance, geo-spatial navigation and navigation on the web (e.g., as shown in
Figure 1.1) are fundamentally different. That is, the former can be experienced in the
real-world, while the latter is virtual. Nevertheless, the problem settings in each scenario
are very similar: for example managing traffic (e.g., cars [95] vs. webpage traffic [141]),
optimizing infrastructures (improving transport systems [180] vs. introducing new hyper
links [429]), or supporting users in their navigation tasks (routing [135] vs. product
recommendation [419]). Similar analogies can be drawn to other fields, such as navigating
music playlists [68] or app usage on cellphones [542].

To address these (and other) problem settings, it is — independent of the application
domain — essential to understand the underlying processes of human navigation behavior.
For example, knowing that people try to minimize the time to travel between home and
work (rather than, e.g., using a scenic route) can help officials to plan new public trans-
portation systems. Similarly, understanding that users tend to follow certain strategies
when looking for information on Wikipedia introduces possibilities to improve Wikipedia’s
category system or, generally, the link network between articles.

1https://en.oxforddictionaries.com/definition/navigation, accessed: December 2017
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1. Introduction

(a) Photo trails in Manhattan based on Flickr (b) Navigation between articles on Wikipedia

Figure 1.1.: An illustration of human navigation. Human navigation can be observed in
many application domains. This figure depicts geo-spatial navigation (a) and navigation on the
web (b). The former shows photo trails collected from Flickr [44] where red transitions represent
tourists and black transitions represent locals (the trails are restricted to pedestrians selected
via speed and travel distance). The latter shows transition counts on a subset of articles on
Wikipedia collected in the context of the game Wikispeedia [520] (the articles and counts are
restricted to those reachable by a single link from the article “United States”). These examples
illustrate the sheer complexity of human navigation behavior. In this thesis, we present novel
methods to understand such behavior and provide insights into the underlying processes of several
complex application domains.

1.1. Comparing hypotheses about human navigation

Understanding the underlying processes of human navigation behavior is not a trivial task.
For example, navigational characteristics may be different depending on the application
domain, i.e., international travel may be governed by different laws than urban navigation
and browsing on Wikipedia can be very different from user behavior on Facebook. Also
there is a multitude of factors that may influence the underlying processes of the observed
navigation behavior. For example, in the geo-spatial context this may encompass the
infrastructure of a city or the influence of points of interest, and for web pages their
similarity to other pages or their general popularity may play an important role.
Thus, to study these factors and to find concise explanations for human navigation

behavior in various settings, we need adequate methodology to formulate and compare
our ideas about the corresponding underlying processes. To this end, HypTrails [453] has
been proposed recently. It is a flexible Bayesian approach for formulating and comparing
hypotheses about human navigation behavior in very different application domains. Such
hypotheses usually stem from existing theory, literature, previous experiments or intuition
(cf. explanatory modeling [446]) and can incorporate many different aspects of human

2
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behavior. For example, HypTrails can be applied to compare hypotheses in online
settings, such as “users navigate semantically” on Wikipedia vs. they “simply browse
randomly” [144], as well as in a geo-spatial context, e.g., for analyzing if tourists prefer
to walk “short distances” before taking their next photo when exploring a city vs. they
tend to “travel long distances between points of interest” before their next shot [44]. This
empowers a wide variety of case studies on human navigation in very different application
scenarios. However, while HypTrails is a straightforward and flexible approach, it has
limitations with regard to formulating hypotheses, the complexity of the underlying
processes of human navigation, as well as the conception of novel hypotheses. We outline
the corresponding challenges in the next section.

1.2. Challenges of hypothesis comparison

As mentioned in the previous section, HypTrails is a powerful tool for understanding human
navigation behavior. It provides a flexible framework for formulating and comparing
hypotheses about the underlying processes of navigational behavior. However, HypTrails
has limitations which we outline in this section.

1.2.1. Complexity of human behavior

Human navigation behavior is inherently complex. One major aspect illustrating this is
grounded in its heterogeneous characteristics. That is, there are often several sub-processes
responsible for observed navigational phenomena. For example, in the geo-spatial context,
it was shown that individual movement is very different from aggregated views on human
mobility [99]. Other studies break down human mobility into sets of characteristic
components [157, 435]. Also see Figure 1.1a illustrating the difference in behavior of
tourists and locals taking pictures in New York City. Similarly, on the web, navigation
behavior is often categorized into several classes (e.g., searching, general browsing, and
serendipitous browsing [92]) and different user groups have been shown to exhibit specific
behavioral traits (for example younger and older populations [353]). This illustrates how
important it is to understand human navigation as a heterogeneous process instead of
assuming that all users in any situation show the same navigation behavior. To this end,
background information, such as different user properties (e.g., being a tourist or not) or
the context in which the navigation process is performed (e.g., the time of the day), play
an important role. However, HypTrails assumes a homogeneous process underlying the
observed navigation behavior and does not allow to model heterogeneous hypotheses.

Another aspect illustrating the complexity of human navigation behavior is its inherently
large scale nature (e.g., consider the English Wikipedia with more than 254 million page
views per day on over five million articles)2. This requires the methodology applied to
analyze and explain human behavior to be able to handle processes spanning extensive

2https://tools.wmflabs.org/siteviews/?platform=all-access&source=pageviews&agent=user&
start=2016-01-01&end=2016-12-31&sites=en.wikipedia.org, accessed: December 2017
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dependency structures as well as massive amounts of observations. However, HypTrails is
not specifically designed to cope with such large-scale environments.

1.2.2. Hypothesis conception

The conception of novel hypotheses about human navigation behavior can be a challenging
task. Especially when considering the vast amount of possible background information
available to the practitioner for explaining its underlying processes. This issue is even
more prominent when prior domain knowledge or specific ideas about possible hypotheses
are limited. For example: Is the distance between places, the attractiveness of points
of interests, the popularity of locations, or a combination of all three of them the best
approach to explain urban navigation? In addition, the inherent heterogeneity of human
behavior (as mentioned in the previous section) introduces further complexity into the
procedure of conceiving hypotheses. For example: Is it important to distinguish between
younger and older people, tourists and locals, or both? Should we consider the time of the
day (e.g., rush hour vs. night times)? These aspects result in an exponentially growing
search space of possible explanations of human navigation behavior. However, by itself,
HypTrails only allows to compare existing hypotheses, e.g., from literature or intuition,
and does not support the process of conceiving novel hypotheses leaving the selection of
relevant background information to the user.

1.2.3. Formulating hypotheses

Finally, even without considering the heterogeneous nature of human navigation (Sec-
tion 1.2.1)and assuming that there is no lack of ideas to formulate hypotheses Section 1.2.2,
the process of formulating hypotheses can still be challenging. That is, there are many
different application domains in which human navigation behavior can be observed (e.g.,
navigating urban areas, or browsing Wikipedia, cf. Figure 1.1). However, while HypTrails
provides a flexible framework, each domain has its own characteristic properties and
may not fit the HypTrails framework directly. For example, in the geo-spatial domain,
navigation is a continuous process, whereas HypTrails requires a discrete state space to
formulate hypotheses. Also, structural factors can play an important role: When studying
web systems, it is important to consider network structures in order to formulate realistic
hypotheses (e.g., there is no link from the article crocodile3 to the article teacup4 on
Wikipedia). Similarly, some web pages may only be available for a limited amount of time
(such as items in an online store). This illustrates that the process of formulating hy-
potheses in the HypTrails framework can be challenging and requires careful consideration
depending on the application domain in order to yield interpretable results.

3https://en.wikipedia.org/wiki/Crocodile, accessed: December 2017
4https://en.wikipedia.org/wiki/Teacup, accessed: December 2017
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1.3. Contribution

In this thesis, we extend existing methodology for as well as research on human navigation
behavior and contribute to understanding its underlying processes. In particular, we
address the issues of comparing complex hypotheses as well as hypothesis conception (as
covered in the previous Sections 1.2.1 and 1.2.2, respectively) by introducing novel method-
ology with a focus on the inherent heterogeneity of of human navigation. Furthermore,
we provide insights into human navigation behavior through an extensive set of studies
and — in the process — develop several specialized approaches for formulating hypotheses
(Section 1.2.3) in the context of various application domains. In the following, we give
more details on our contributions which we structure as visualized by Figure 1.2.

1.3.1. Methods

On a methodological level, we categorize our work into two mutually beneficial strategies:
hypothesis comparison and hypothesis conception (see Figure 1.2). Hypothesis comparison
refers to formulating existing ideas as hypotheses (stemming from theory, domain knowl-
edge, previous experiments, or intuition) and comparing them based on observed data.
hypothesis conception, on the other hand, refers to deriving novel ideas and hypotheses
about the underlying processes of human navigation based on a given set of observed
navigational data, e.g., by visualizing, exploring or automatically discovering regularities
and patterns. In the following, we summarize our approaches and contributions along
these two concepts.

1.3.1.1. Comparing complex hypotheses

As mentioned in Section 1.1, we employ the recently proposed HypTrails approach for
comparing hypotheses about human navigation behavior. However, HypTrails has limita-
tions with regard to the complexity inherent to navigational processes (cf. Section 1.2.1).
The next two paragraphs summarize our work to address these limitations consisting of
contributions on a methodological as well as on a tooling level.
In Section 1.2.1, we have emphasized the homogeneous nature of HypTrails which

does not allow to explicitly incorporate heterogeneity into hypotheses, (e.g., in the
form of differently behaving user groups such as tourists and locals as depicted in
Figure 1.1a). Thus, as one of our main contributions, we extend HypTrails to account
for the heterogeneity inherent to human navigation behavior. That is, we propose the
MixedTrails approach (see Chapter 4), which allows to model and compare hypotheses
composed of a set of different navigation processes, instead of assuming the same process
for the complete set of observed data (as HypTrails does). For example, in the context of
our Flickr case study (Chapter 7), we formulate the hypothesis that “tourists exploring a
city are more likely to take their next photo after a short distance while locals are more
selective resulting in longer distances between photos”. Similarly, for search-trails on
Wikipedia (Section 11.2), we test whether it is plausible that “users navigate to central
articles first, before using semantic relatedness to find the article they search for”.
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Figure 1.2.: Our contributions towards understanding human navigation behavior.
The core concept of this thesis are understandable hypotheses (explanations) about human
navigation behavior. To analyze a given dataset with respect to such hypotheses, we can either
formulate a set of candidates (e.g., from theory, literature, previous experiments, or intuition) and
compare them based on how well they explain the observations. Or we can directly analyze the
data in order to conceive plausible explanations, e.g., based on the regularities and patterns we
observe. In both areas we contribute a novel method (MixedTrails and SubTrails, respectively).
We also provide a variety of tools including, for example, an algorithm for efficiently handling
large problem settings as well as several visualization mechanisms. Finally, we analyze human
navigation behavior in various complex applications domains and — in the process — introduce
approaches to handle challenges like continuous navigation data or temporal constraints.
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On the tooling level, we furthermore introduce SparkTrails (Section 6.1), a distributed
implementation of HypTrails based on the MapReduce paradigm. It allows to apply
HypTrails in large-scale application scenarios enabling hypothesis comparison for extensive
dependency structures as well as massive amounts of observations. This method was used
in several of our case studies (Part III).

1.3.1.2. Conception of novel hypotheses

As outlined in Section 1.2.2, methods for supporting the conception of hypotheses about
human navigation behavior are required in cases when prior domain knowledge or specific
ideas are missing (see red elements in Figure 1.2). In this thesis, we contribute several
methods and tools based on descriptive analysis and exceptional model mining in order
to support the process of conceiving novel hypotheses and to better understand the
underlying processes of human navigation.
As one of our main contributions in this thesis, we exploit the descriptive nature of

subgroup discovery by employing the framework of exceptional model mining — an
extension of subgroup discovery — to propose SubTrails, a novel method for mining
subgroups of sequence data (see Chapter 5). By design, SubTrails returns interpretable
subgroups with exceptional transition behavior based on a set of attributes provided by
background information. This allows us to find patterns like “tourists exhibit exceptionally
different navigation behavior compared to the overall population when navigating a city”.
The local nature of this approach, i.e., the fact that we find subsets of the data with
exceptional properties, allows to further explore heterogeneity in human navigation
behavior (cf. Sections 1.2.1 and 1.2.2).

On the tooling level for conceiving novel hypotheses, we present VizTrails (Section 6.2)
and the EveryAware platform (Section 6.3). VizTrails is an interactive visualization tool
for better understanding how navigation behavior in a geo-spatial context materializes.
And the EveryAware system is a holistic platform for collecting, analyzing, and visualizing
mobile environmental measurements specifically featuring the environmental aspects of
noise pollution and air quality measurements. Besides covering the mobile aspects of
human navigation represented by collecting geo-spatial tracks, EveryAware explicitly
incorporates subjective annotations by users allowing to study navigation behavior in a
unique scenario.

1.3.2. Case studies

Human navigation behavior can be observed in a wide variety of settings and exhibits very
specific characteristics in each scenario. In this thesis, we present work in several such
domains broadly applying our methodology and tools mentioned in Section 1.3.1. In the
process, we develop approaches to handle several challenges mentioned in Section 1.2.3
by formulating hypotheses in the context of applications with continuous navigation data
or temporal constraints.

In particular, we explore photo trails using the full range of our methods, i.e., analyzing
overall behavior by comparing hypotheses about urban navigation (e.g., based on proximity

7
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and popularity of points of interest) using HypTrails, extracting subgroups of the data
using SubTrails, and formulating heterogeneous hypotheses accounting for different user
groups using MixedTrails (in this case, tourists and locals). A special challenge in this case
study is handling continuous navigation data. Furthermore, with our study on explorative
components of geo-spatial navigation in the context of a participatory air quality sensing
campaigns, we cover a previously seldom inspected domain of navigation behavior. Here,
in addition to a continuous navigation process, we have to cope with temporally dense
observations requiring a very restricted type of hypotheses. Additionally, in the context
of online social bookmarking systems, we formulate novel hypotheses about the browsing
behavior of users in folksonomies and study the characteristics of different user groups
on the BibSonomy platform5. And for crowdsourcing environments, we introduce one of
the first studies which compares hypotheses about task-choosing behavior (e.g., based on
monetary incentives or category consistency) on actual log data instead of using surveys.
For this case study, we handle temporal constraints caused by the limited availability of
campaigns. Finally, we cover several small scale case studies which include a preliminary
analysis of navigational processes when exploring urban noise pollution as well as two
examples of applying MixedTrails and SubTrails to navigation on Wikipedia6 and the
music platform last.fm7, respectively.

Overall, our case studies illustrate the variety of domains and facets in which navigation
can be studied and, thus, showcase the applicability and flexibility of our approaches. In
the process, we present new aspects of navigation phenomena which ultimately help to
better understand the multi-faceted characteristics of human navigation behavior.

1.4. Structure of this work

This thesis is divided into three parts: background (Part I), methodological contribu-
tions (Part II), and case studies (Part III).

In the background part (Part I), we first cover the current state of understanding human
navigation behavior (Chapter 2) in the context of geo-spatial navigation (Section 2.1)
as well as navigation on the web (Section 2.2). Then, we introduce the methodological
foundations of this thesis (Chapter 3). This includes information on discrete navigational
processes (Section 3.1) and Markov chains (Section 3.2) which define the underlying
concepts of our contributions. In the same section, we continue by reviewing the HypTrails
approach for comparing navigational hypotheses (Section 3.3.2) as well as exceptional
model mining (Section 3.4). Each of these two concepts is used as the foundation of
one of our main methodological contributions (MixedTrails and SubTrails, respectively).
Furthermore, many of our case studies strongly rely on HypTrails.

After covering the required background information, we introduce several novel methods
for analyzing human navigation behavior (Part II). Our main contributions are the two
methods MixedTrails (Chapter 4) and SubTrails (Chapter 5). The hypothesis comparison

5https://www.bibsonomy.org, accessed: December 2017
6https://www.wikipedia.org, accessed: December 2017
7https://www.last.fm, accessed: December 2017
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approach, MixedTrails, extends the previously proposed HypTrails method to allow formu-
lating and comparing heterogeneous hypotheses, while the hypothesis conception approach,
SubTrails, represents an algorithm for mining subgroups with exceptional navigation
behavior. Our methodological contribution also includes several tools in Chapter 6 which
consist of a distributed implementation of HypTrails (Section 6.1), a tool for visualizing
geo-spatial human navigation in the context of background information (Section 6.2), as
well as a system for collecting, analyzing, and visualizing mobile participatory sensing
data (Section 6.3).

The final part (Part III) of our thesis consists of a broad variety of studies on real-world
human navigation behavior. This includes work on geo-tagged photos from Flickr in
Chapter 7, on exploration processes in the context of a participatory air quality sensing
campaign (Chapter 8), on browsing behavior on the social tagging system BibSonomy in
Chapter 9, on task choosing behavior on a commercial crowdsourcing platform (Chap-
ter 10), as well as a several small scale studies on navigation in the context of urban noise
pollution exploration, Wikipedia, and music play lists (Chapter 11). Finally, Chapter 12
closes this thesis with a summary as well as remarks on future work.
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2. Current state of understanding human
navigation behavior

Our introduction in Chapter 1 illustrates that understanding human navigation behavior
has implications for a variety of application domains, such as city planning and public
transport in geo-spatial contexts, or improving web site structures and service experience in
online settings. Consequently, many studies have been conducted in both areas supported
by a steadily increasing number of novel data sources, such as GPS tracks or location
based social media check-ins for geo-spatial navigation, and large-scale log datasets from
internet service providers or online platforms in the context of navigation on the web.

In this thesis, we also contribute towards understanding human navigation behavior by
introducing novel methodology to analyze and explore observed data in geo-spatial as
well as online settings, and conduct a wide range of different case studies. Thus, to place
our work, this chapter reviews existing work on human navigation behavior in the context
of geo-spatial navigation (Section 2.1), as well as navigation on the web (Section 2.2).
In particular, for both fields, we first outline early work and give a general overview of
data sources and domains. Then, we introduce a set of existing modeling approaches
in order to illustrate how other studies have explained observed navigational data. We
also list work on regularities and patterns exhibited by human behavior illustrating
the different factors that can influence such observations. Finally, we reiterate over
the reviewed research and highlight studies where the heterogeneous nature of human
behavior is particularly prominent (e.g., in the form of differently behaving user groups
or characteristic navigation patterns on different days of the week). This emphasizes the
value of our main contributions, i.e., enabling and supporting the process of exploring,
discovering, and explaining the heterogenous aspects of navigational data (cf. Chapter 1).

2.1. Geo-spatial behavior

As we have argued in Chapter 1, human navigation behavior can be observed in a variety
of domains. Besides navigation on the web, as we will cover in Section 2.2, this specifically
includes human mobility in the geo-spatial context.1 Human mobility studies are highly
relevant with regard to our daily lives, since they have implications for a wide variety of
applications such as understanding human migration patterns [234, 417, 450], improving
urban planning and traffic management [61, 143, 207, 267], crime prevention [74, 85],
1 Due to their ubiquitous nature, geo-spatial mobility, movement, and navigation have been studied in a
wide variety of scenarios. Corresponding studies do not only center on human society but also include
work about animal mobility [53, 158, 428, 452], and sometimes even its relation to human movement
characteristics [250].
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predicting the spread of diseases [32, 48, 430], or recommending places or travel routes
for locals and tourists [106, 189, 295, 476]. In this section, we place our methodological
approaches (Part II) as well as our case studies (Part III) into the corresponding context
of human mobility by giving a brief overview of this broad field of research.

Specifically, we give a short overview of early work on human mobility (Section 2.1.1),
and follow up with a small summary of the development of available geo-spatial data
sources (Section 2.1.2). Then, we cover several aspects of modeling geo-spatial navigation
behavior (Section 2.1.3), and review results on patterns and regularities discovered by
previous work in Section 2.1.4. Afterwards (Section 2.1.5), we cover the notion of
heterogeneity in human mobility data which is especially relevant for this thesis since our
contributions specifically aim at incorporating multiple sub-processes for explaining human
navigation behavior instead of employing a single, possibly oversimplified explanation (cf.
Chapter 1). We close this section with a discussion on the relation of our work to the
previously covered studies (Section 2.1.6).

2.1.1. Early work and development

One of the earliest “modern studies” [377] on human movement has been conducted by
Ravenstein [416, 417] who analyzed census data from several countries. He found certain
laws governing the process of migration. Later studies revisited these laws and put them
into more modern terms such as “Zipf’s law” [484], or the gravity model [88].2 Consecutive
work also studied human migration patterns [304, 458, 473, 554] and, like Ravenstein,
mainly worked with census data or employed information gathered through surveys.
Human mobility studies, however, are not limited to migration. Especially with the

significant urban growth throughout the 20th century [512], human mobility models
became important in order to manage the corresponding challenges in urban planning.
For example, there are studies on land use [e.g., 95], commuting behavior [e.g., 184], or
travel demand [for an overview see, e.g., 351]. Many of these studies and the corresponding
methods and models such as the gravity model [88], the model of intervening opportuni-
ties [473], trip and activity based travel demand models [351], or origin-destination flow
estimation [86] still influence research on human mobility today [32, 139, 378, 535].
Nevertheless, all of these studies were limited in that the used data was very sparse

with regard to spatial as well as temporal resolution. Especially information from surveys
— as has been (and still is) often employed for human mobility studies — seldom covers a
large number of individuals. This changed with the advent of cellular phones, the global
positioning system, GPS, and the World Wide Web, as covered in the following section.

2.1.2. Data sources for geo-spatial navigation

While there are many sources to collect data about human mobility, there are three
technologies which have strongly shaped human mobility research in the past two decades,
i.e., mobile phones, the global position system GPS, and their combination in the form
of smartphones giving rise to social networks with location features. In this section, we
2A form of the gravity model was even mentioned as early as 1781, cf. [450].
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briefly cover the data sources associated with these technologies. For another overview on
data sources in the context of human mobility, we refer to Asgari et al. [19].

2.1.2.1. Call detail records (CDR)

With the launch of the second generation of cellular technology in Finland in the early
1990s, human communication has changed tremendously [377]. In a few years the world
coverage of mobile phone subscriptions grew from 12% of the world population to 96% in
2014 resulting in 6.8 billion subscribers [65]. For these users, telecommunication companies
keep call detail records (CDR) from which locations can be inferred every time the user
initiates or receives a call or a text message using the location of the tower routing the
communication [214]. Blondel et al. [65] give an overview of the studies emerging from this
kind of data in general. With regard to mobility, even though there are studies warning
about bias [329, 415, 518], and even though CDR data does not provide a high spatial
(e.g., 2 km2 to 3 km2, [420]) or temporal resolution (hand picked intervals or dependent
on the frequency of text messages and calls), studying human mobility using large sets of
CDR data is an active area of research [e.g., 46, 214, 245].

2.1.2.2. Global positioning system (GPS)

Another source of location data often used to study human mobility are GPS tracks [e.g.,
91, 276, 562]. The global positioning system (GPS) was developed in the 1970’s by the U.S.
Military, reaching full operational capacity in 1995 [409]. Since then it was used in a wide
variety of applications including mobility and movement behavior research where it was
employed to enhance individual travel surveys [445, 531]. After the year 2000, when the
artificial accuracy limitation (selective availability) for civilian use was deactivated [531],
many industries adopted GPS. This resulted in a boom of navigation devices and the
integration into smartphones, the latter starting in 1999 and being continuously improved,
e.g., by introducing assisted GPS in 2004 by Qualcomm.3 Compared to call detail records
(CDR), which are sparse in time and coarse in space [46], GPS tracks are more fine grained
and temporally dense. However, studies using GPS tracks are often criticized because
they tend to contain small amounts of participants [415, 445], at least in the context of
travel surveys. In other domains, large scale datasets are available, for example, including
GPS tracks of fitness trackers or taxis [91, 400]. Even though this data, in comparison to
surveys, usually lacks background information (e.g., about the users or the purpose of the
trip), it can still be employed to derive interesting insights into human mobility [e.g., 185].

2.1.2.3. Social networks and locations

The introduction of the World Wide Web (WWW) in the early 1900s [59] has contributed
greatly to studying human mobility [124]. For example, distributing surveys to larger
amounts of participants became easier, as taken advantage of by Brockmann et al. [75],
who tracked dollar bills using a web interface to reach a broad audience.4 However, the
3http://www.pcworld.com/article/2000276/a-brief-history-of-gps.html, accessed: 11.02.2017
4http://www.wheresgeorge.com/, accessed: December 2017
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most interesting change came with the increasing popularity of social networks [163] and
the general adoption of smartphones at the beginning of the 21st century [377].5 The
continuously improving localization capabilities of smartphones using a combination of
network, Wifi, and GPS positioning in combination with their access to the WWW gave
rise to location based social networks and triggered the integration of location features
into existing social networks. This led to novel research on human mobility based on
dedicated location-based platforms like Gowalla6, Brightkite6, Foursquare7 [116, 433]
but also on existing social networks such as Facebook8 [509], or Twitter9 [107, 235]
which started to incorporate location features into their systems. Even though these
services are usually based on active check-ins, thus, sharing some draw-backs with call
detail records [556] and even exhibiting an inferior temporal resolution, they provide a
unique link between location sequences and semantic data such as information about the
location, corresponding activities, and friendship relations [116, 233]. Other specialized
systems provide very specific localized information, such as yelp!10, which implements a
review system for places [cf., 82], and Flickr11, a social photo-sharing platform supporting
geo-tagged photos [cf., 37, 205, 206].

2.1.2.4. Other data sources and discussion

In Section 2.1.1 as well as this section, we have covered the “traditional” [233, 445] survey
based data collection method as well as three currently often used data sources used
in human mobility research, i.e., call detail records from mobile phones, GPS tracks,
and social networks with location features. While there are other data sources worth
mentioning, such as specifically exploiting the Wifi [368, 418, 427, 548] or Bluetooth [155,
469] capabilities of smartphones (e.g., for indoor localization), RFID technology [e.g.,
94], smart cards in transport systems [334, 392], or usage data of bike sharing stations
[180, 267], the formerly mentioned three sources have gained particular interest by the
research community. Nevertheless, each data source has its own characteristics and may
represent reality in a biased way [99]. Also note, that the different data sources can
capture mobility at different scales including inter-continent scale [32, 356], inter-country
scale [32, 235, 516], regional scale [193, 450], intra-city scale [378, 535], and even campus
scale or within buildings [27, 94, 249]. Each can be used for different aspects of mobility,
with the potential to still yield universal patterns. For more information, we also refer to
surveys as by Asgari et al. [19], Chen et al. [99], and Zhao et al. [558].

5The IBM Simon produced in 1995 is being considered the first smartphone:
https://www.bloomberg.com/news/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone,
accessed: 2017-02-13

6discontinued
7https://foursquare.com/, accessed: December 2017
8https://facebook.com, accessed: December 2017
9https://twitter.com, accessed: December 2017
10https://yelp.com, accessed: December 2017
11https://flickr.com, accessed: December 2017
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2.1.3. Modeling

There are several studies categorizing and summarizing geo-spatial navigation behavior
research and human mobility from different view points [e.g., 19, 99, 558]. In this section,
we list some prominent results spanning the previously introduced data sources, different
scales, and various approaches. Note that there are generally two fields of research,
both analyzing and modeling human movement behavior with different background and
methodology. They are called “travel behavior analysis” and “human mobility analysis”
by Chen et al. [99]. The former consists of a longer history of transportation researchers
modeling human mobility with advanced and intricate models but mostly based on small
datasets and surveys. The latter is a collection of mostly computer scientists and physicists
focusing on recently available larger datasets as covered in Section 2.1.2. For a comparison
of both fields we refer to Chen et al. [99].
In this section, we focus on “human mobility analysis”, i.e., we mostly cover results

on large datasets from the various sources introduced in Section 2.1.2.12 In particular,
we first cover the prominent field of models concerning distance and opportunities for
explaining and predicting human mobility characteristics. Afterwards, we review the
notion of trip displacement distributions which is an often used concept for studying
different properties of the observed data when modeling human movement processes.

2.1.3.1. Distance and opportunities

Human mobility is strongly intertwined with distance. In particular, the notion of some
form of distance decay plays an important role in many human mobility models. In this
section, we focus on models for human movement on an aggregate level. Specifically,
these models predict the number of people transitioning between discrete locations: There
are two prominent models, taking different vantage points on this concept, namely the
gravity approach and the idea of intervening opportunities. In the following, we first
introduce each model, also including the radiation model, a widely adopted variant of
the intervening opportunities approach. Then, we focus on recent work comparing and
extending both models. We finish with a short summary concluding that while both
methods seem to be viable models of human mobility and some universal traits can be
found, a universal model for human mobility has not yet been established. We also refer
to Lenormand et al. [313] who give a similar overview.
The gravity model. According to Simini et al. [450] the contemporary formulation of
the gravity model goes back to Zipf [570] with roots in the 18th century. It models the
number of transitions between two locations proportionally to their combined population
decaying with respect to some function of their distance [cf., 313]. Two frequently used
decay functions, often compared against each other, are the power-law and the exponential
function [105, 322]. The gravity model has seen many applications, studies and extensions
in a variety contexts within the field of human mobility: For example, the original work by
Zipf studied the number of persons that move between cities based on public bus travel,
12Note that, in the following sections as well as the rest of this thesis, we loosely use the terms “mobility”,

“navigation”, and “movement” synonymously.

17



2. Current state of understanding human navigation behavior

railway travel, and airway travel (with data from the office of the Federal Coordinator of
Transportation) and found considerable correlation (especially for bus travel) between
the observed data and the results from the gravity model. For work on the gravity model
applied to transportation analysis in general, Erlander and Stewart [165] give an overview
up until 1990. In more recent work, the gravity model was applied to fit the traffic flow on
highways between cities in Korea [263], to explain the spreading of infectious diseases [32],
and to explain patterns in check-in data from a Chinese location based social network Liu
et al. [328], where that latter found a power-law distance decay effect and suspect different
decays for inter- and intra-province mobility. Other studies include, but are not limited
to: Gargiulo et al. [192], Griffith [218], Lenormand et al. [314], Liang et al. [322], Masucci
et al. [344], and Pappalardo et al. [389].

Intervening opportunities. The intervening opportunities model was introduced by
Stouffer [473]. It only indirectly models a distance decay by incorporating distance as a
notion of “opportunities” between two different locations. In particular Stouffer states
that “the number of persons going a given distance is directly proportional to the number
of opportunities at that distance and inversely proportional to the number of intervening
opportunities”. Stouffer also notes that the concept of distance (between two locations)
as well as the notion of opportunities can and must be defined in different ways in order
to explain mobility in different contexts: distance can be related to units in space, cost,
or time and opportunities can be defined with regard to the social situation of the study,
e.g., job opportunities when studying migration or recreational areas when studying
intra-urban mobility. After its introduction, the intervening opportunities model has been
studied intently (see, e.g., Akwawua and Pooler [11], Haynes et al. [237], Ruiter [425],
and Wills [530] listed by Lenormand et al. [313]) and was found to perform comparably
to the gravity model. Even so, the gravity model has been applied more readily. Only
recently [313] new models were proposed inherently building on the concept of intervening
opportunities [269]. Such models include, for example, the radiation model [450], the
rank-based gravity model [378], or the population weighted opportunity model [545]. Of
these models the radiation model has found considerable attention in human mobility
research, cf. [269, 313, 344, 388, 544].

The radiation model. The radiation model was proposed by Simini et al. [450],
who argued that the gravity model, i.e., its parameterized version13, needs parameter
adjustments varying by region and suffers from analytic inconsistencies. To solve these
issues they introduced the radiation model: Analogously to the gravity model the number
of predicted transitions from one location to another grows as the population at both
locations increases. However, it also incorporates the idea of intervening opportunities and
models an absorption potential by weighing against the size of the population between
both locations. They evaluated the raditaion model on hourly travel counts, migration,
communication patterns, and commodity flows derived from census data, call detail
records and tax documents (mostly on a state, county, or municipality scale), and found
their model to fit the data better than the gravity model.

13For a comparison of the parameterized vs. non-parameterized gravity model we refer to, e.g., Masucci
et al. [344].
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Extensions. Since the introduction of the radiation model, several comparative stud-
ies, and extensions to both, the gravity and the radiation model, have emerged with
contradicting results [314]. For example, in contrast to Simini et al. [450], Masucci
et al. [344] compared the gravity and the radiation model and found that, generally, the
(parameterized) gravity model performed better in modeling commuting flows (based
on census data) on a national level, i.e., between cities and city clusters in England
and Wales. Nevertheless, they also noted that the radiation model has advantages in
situation were calibration data is missing and found that “for large distances and small
and moderate destination population scales, the principles of the radiation model are
reliable and that mobility patterns can be approached by a diffusion model [such as the
radiation model] where intervening opportunities on the commuting paths prevail on the
distance of such paths”. Finally, they observed that on an urban level (between wards in
and around the Greater London Authority area) neither model performed well. Again,
slightly contradicting results were found by Palchykov et al. [388] who studied the gravity
and radiation model using the number of phone calls as a proxy for movement. While
they confirmed that the radiation model works better for long distances, they concluded
that, on average, both models represent the processes of inter- as well as intra-city (cell
tower) movement to some degree. Nevertheless, they argued that their data does not
necessarily reflect reality due their use of call counts as a proxy for mobility. Finally,
one of the latest comparisons of gravity and radiation models by Lenormand et al. [313]
performed a systematic comparison by employing several commuting datasets. Lenormand
et al. emphasized the importance of similar testing situations with regard to i) the input
(population counts, jobs opportunities, etc.) and ii) the applied constraints with regard
to preserving the observed number of incoming and outgoing transitions at each location
(cf. Wills [530] for a discussion on constraints). They found the gravity model with an
exponential decay to perform best, but — like the other studies — noted that it fails to
estimate commuting flows at large distances.

Universal laws. Overall, the discussion around these models is shaped by the aim to
find a universal law [e.g., 294, 378, 450], i.e., a model which i) explains human mobility at
different scales (e.g., between cities and within cities) and in different contexts (such as taxi
logs, call detail records or migration), and ii) with the least amount of parameters. While
several studies claim that their models (extensions or variants of the previously introduced
gravity, intervening opportunities, or radiation model) are universally applicable [e.g.,
378, 450], a tendency was found that the gravity model performs better at short distance
movement and that the radiation model is more accurate at modeling long distance
mobility [e.g., 344]. Thus, in order to derive a universal law, several researchers have
attempted to generalize either model. For example, Kang et al. [269] claim the formulation
of a generalized version of the radiation model. They reported that it overcomes the
previously found limits in modeling short range mobility at the cost of introducing several
parameters (a scaling exponent and a normalization factor) in the context of using search
direction and trip origin-destination (OD) constraints. Also, Simini et al. [451] formulated
a model from which the gravity model, the intervening opportunity model, and the
radiation model can be derived as special cases.
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However, while there are numerous models, they still fail to paint a consistent picture
of human mobility, either because they do not generalize to all scales and environments of
human mobility or because they need a set of parameters to be fitted to the observed data.
This indicates that various factors of human navigation behavior are still not understood.
This thesis aims to further explore such factors incoporating a broad set of background
information in order to better understand the underlying processes.

2.1.3.2. The trip displacement distribution

Studying the trip displacement (also transition length or trip distance) distribution has
become a trademark for recent human mobility studies [188]. In this context, a frequent
question is if trip displacement can be described as a scaling law: Many studies found [cf.,
12, 188] that human travel and mobility show a power-law distribution at a larger scale
(national or inter-urban) such as, for example, Liu et al. [325] and Song et al. [462],
and exhibit an exponential distribution at smaller scales (e.g., at an urban level) as for
example observed by Liang et al. [323] and Liu et al. [325]. Some studies also found other
distributions, such as a superimposition of Poisson [188] or the log-normal distribution [12,
557]. For more information, Alessandretti et al. [12] give an extensive overview of trip
displacement studies covering work from 2006 to 2016 using different data types (call
detail records, taxi and user GPS traces, location based social networks, or surveys) and
different scales (from 10 m to 10 000 km transitions).

Different models and approaches were applied to explain these characteristics. A variety
of models exist for this purpose [e.g., 535]. However, the most common approaches are
models predicting travel counts on the one hand (similar to the already mentioned gravity
or radiation model [322, 328]); and trajectory based approaches on the other hand, which
explicitly model individual trips. The latter models are based on random walks [188],
including, in particular, Lévy flights [75, 420, 557]. Generally, Lévy flights prefer short
flights with an occasional long jump in between. However, even though they cover an
important aspect of human mobility they are often noted to miss other observed properties
such as spatial and temporal regularities, exploration, or preferential return [cf. 214, 259,
462]. Nevertheless, these models — including for instance the random waypoint model or
the concept of Brownian motion — are also extensively used in the mobile ad hoc network
community [cf., 83, 420] to simulate human mobility in order to evaluate their systems.

2.1.4. Regularities and patterns

The methods and models covered in Section 2.1.3 explain or reproduce certain aspects
and regularities of human mobility to an extent that can be considered a universal law.
For example, independent of the scale (e.g., city or national) and the dataset (e.g., taxi or
call detail records) transition counts exhibit gravity or radiation characteristics [105, 322,
450] and trip length distributions show power-law and exponential behavior [323, 462].
On a more detailed level, however, these laws and models often require fitting to the data
which indicates influence factors beyond mechanical processes [e.g., 270]. Furthermore,
besides these aggregate regularities it has also been widely recognized that the proposed
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approaches do not cover more intricate characteristics, i.e., they do not account for the
fact that a specific individual does usually not behave randomly [462]. Thus, a variety
of constraints, regularities, and patterns have been studied in the process of trying to
explain different aspects of human mobility. For example, to explain trip displacement
as covered in Section 2.1.3.2, a variety of aspects has been studied such as the average
population density in urban areas [322], place density [102], the underlying street network
[259], travel times [188], or the activities of individuals [535].
In the following, we cover several patterns and regularities of human mobility which

are important to understand human navigation behavior as a whole. In particular, we
cover several spatial and temporal aspects (Section 2.1.4.1), the influence of activities
and context (Section 2.1.4.2), as well as social factors (Section 2.1.4.3).

2.1.4.1. Spatial and temporal aspects

It has been found that individual human mobility has a high degree of spatial and
temporal regularity [e.g., 107, 136, 157, 213, 214, 384, 389, 462, 488]. For example, based
on call detail records, Song et al. [462, 463] showed i) that the daily mobility patterns
of users are restricted to a relatively small area with relatively few explorations, i.e.,
they have a 1 to 10 miles radius of gyration, ii) that users exhibit preferential return14,
i.e., they visit a small set of locations frequently15, and iii) that human mobility has
predictability rate potentially as high as 93%. Furthermore, Cheng et al. [107] confirmed
similar findings across several countries and cities using check-in data from location
based social networks. They also found strong regularities in daily and weekly check-in
frequencies and discover differences between work days and weekends. Along the same
line, Kaltenbrunner et al. [267] studied the spatio-temporal activity cycles of a city
using bike-sharing data. And finally, Oliveira et al. [384] found significant similarities
in people’s mobility habits regardless of the city and nature of the dataset (using data
from OpenStreetMap16, GeoLife [565], and call detail records). They also list three traits
present in an individual’s urban mobility: preference for shortest-paths, confinement, and
repetitiveness, which match the patterns mentioned above very well.

2.1.4.2. Activities and context

Another important aspect of human mobility is its contextual component, i.e., under-
standing the incentives and purposes of human movement is essential to explain individual
trajectories and improve the modeling of emerging mobility patterns. Indeed, in aggregate
mobility studies and in particular in traffic and travel demand modeling there has been a
shift from trip-based models, such as the four step model [351], to activity-based mod-
els [16, 61, 421], which recognize that travel demand stems from daily activity patterns.
Discrete choice models are an even more fine-grained variant, which microscopically model
user choices based on alternatives, trade-offs, and conditions [cf., 99].
14Preferential return was, for example, also used by Pappalardo et al. [389] in combination with a gravity

model to simulate individual traces.
15In fact 70% of the time a user can be found at her most visited location. [462, 463]
16https://wiki.openstreetmap.org/wiki/API
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In the following, we cover several studies which explicitly take into account activities as
well as contextual information in order to model geo-spatial human navigation behavior. In
particular, we review work which aims at decomposing geo-spatial behavior into different
activities, we cover studies analyzing human mobility on the activity-level instead of
directly considering trajectories, and we list research on coping with sparsity of contextual
information for raw trajectory data needed to derive activity information.

Composition of activities. In contrast to the field of travel demand and traffic
modeling, which tries to build fine-grained models, the data mining community focuses
more on finding general patterns in large datasets. In this context, recent work has found
that human mobility can be separated into basic daily activity patterns. For example,
Eagle and Pentland [157] observed specific “eigenbehaviors” between locations like home
or work which allowed for predicting the remaining activity of the day given its first half.
And, based on taxi trips from Shanghai, Peng et al. [393] discovered that people travel
on workdays mainly for three basic purposes: commuting between home and workplace,
traveling from workplace to workplace, and a subsuming purpose including, e.g., leisure
activities. Accordingly, Wang et al. [510] found that mobility is easier to predict on
workdays than on weekends by using taxi, bus, and check-in data. Finally, Schneider et al.
[435] studied daily motifs represented by activity networks. Using surveys and mobile
phone data for different countries, they discovered 17 unique networks (between locations)
in daily mobility which captured the behavior up to 90% of the population. Similar work
is based on motifs using data from Boston, Vienna, and Singapore [260, 261, 526].

Activity-level analysis. The previously mentioned results indicate that the shift towards
activity based models as well as the contextual information of trips can account for strong
regularities in human mobility. Consequently, other work has focused on the more abstract
concept of activities instead of concentrating on raw trajectory data. For example, Wu
et al. [535] analyzed location check-in data and found that transition probabilities between
activities change over time. They also simulated travel demand based transitions between
two different activity types, i.e., fixed location (e.g., home, work) and multi-location (e.g.,
dinner, recreation) “activities”. Furthermore, Thomas et al. [483] studied the connection
between activities and distance decay based on survey data. Also, Preoţiuc-Pietro and
Cohn [406] investigated Foursquare check-ins in order to explore activity class distributions
over time and their respective transitions. They clustered users based on their activity
profile and identified classes like “businessmen” or “students”. Finally, Ying et al. [547]
improved on predicting the next movement of mobile users by exploiting “semantic”
trajectories (meaningful trajectories such as bank → park → home).

Discovering activities and context. However, an issue with studying activities to
explain human mobility is, that, with big data, there is the dilemma that trajectory data
is readily available but activity data as well as background data is sparse [213]. Thus,
several approaches have been proposed to infer context such as activity locations and trip
purposes from movement trajectories. Some use clustering approaches to find activity
locations [82, 546], while others try to also explain the purpose of a location, for example,
by using information from points of interest [213, 251, 539], or geo-tagged messages from
Twitter [185, 559]. Also see Chen et al. [99] for further work in this area.
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2.1.4.3. Social factors

A strong factor in human mobility was found to be social relations and social interaction.
In the following, we cover general relations between social ties and human mobility, review
work on predicting social ties from spatio-temporal behavior, and list a selection of models
for human navigation behavior which incorporate social factors.
Influence of social ties on human mobility. On the most general level, studies show
that the frequency of contact of individuals (analog and digital) is inversely proportional
to spatial distance [210, 394]. With regard to social factors, Phithakkitnukoon et al.
[396] discovered strong connections between proximity and social ties based on call detail
records. Along this line, Lu et al. [331] found that people tend to travel to places where
they have social bonds and Berg et al. [58] reported that — according to statistics
from Netherland — more than 15% of trips are due to social activities. Furthermore,
Scellato et al. [433] discovered similar socio-spatial properties across several location-based
social networks (LBSN), i.e., Brightkite, Gowalla und Foursquare, signaling significant
correlations between the users’ social properties and their spatial behavior; whereas
Phithakkitnukoon and Smoreda [395] deduced that people tend to have a more similar
behavior with closer social ties. Finally, Backstrom et al. [29] observed and measured the
relationship between geography and friendship based on addresses reported on Facebook
and were even able to predict user locations based on the spatial behavior of their social
ties.
Predicting social ties. As covered above, social ties stronlgy influence human movement
behavior yielding characterstic navigational patterns. Thus, it is also possible to infer the
underlying social ties by using such patterns. For example, Wang et al. [505] studied call
detail records showing that the similarity between two individuals’ movements strongly
correlates with their proximity in the corresponding call network allowing to predict new
links within this network. Eagle et al. [156] also used mobile phone records and argued
that proximity is generally much higher for friends and find that up to 95% of friendship
dyads can be accurately inferred using observational data on human behavior. There
are many other works in this direction including, for example, Cranshaw et al. [129]
who improved, e.g., on Eagle et al. [156], predicting friendship between two users by
analyzing their location trails. Similarly, Crandall et al. [127] proposed a co-occurrence
based method on data from the social photo-sharing platform Flickr and Xiao et al. [538]
used GPS tracks to calculate a similarity measure based on semantic trajectories [cf. 547]
which they employed to derive social ties.
Human mobility models incorporating social ties. With regard to modeling human
mobility incorporating social factors, there is, for example, a variety of models in the
MANET (mobile ad hoc networks) community incorporating social properties [73, 242,
371]. In particular, Boldrini and Passarella [66] incorporated social attraction, location
attraction, and preference for short distances, which is reported to accurately model ICT
(inter contact time) and jump sizes. Also, while Cho et al. [116] found that short-ranged
travel is periodic both spatially and temporally and not effected by the social network
structure, they also reported that long-distance travel was influenced by social network
ties. Using these properties, they showed that social relationships can explain about 10%
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to 30% of all human movement while periodic behavior explains 50% to 70%. Finally,
Toole et al. [487] studied call detail records and i) showed that mobility similarity can be
used to classify social relationships, ii) recovered semantic information about the nature
of a link in the social network, and iii) proposed a human mobility model incorporating
movement-based visitation patterns of social contacts.

2.1.5. Heterogeneity

Even though many researchers work on universal models when considering aggregate
mobility [e.g., 378, 450], it has been widely recognized that human movement is strongly
heterogeneous. This has been shown for individual trajectories but can also be observed
at different levels of aggregate statistics. In this section, we cover several factors of
heterogeneity starting with the difference of mobility patterns for individuals and follow
up with a short overview on demographic and user-based influence factors. Furthermore,
we review work on clusters and components within human navigation behavior.

Individual mobility. For individual mobility, similarly to Yan et al. [543], Chen et al.
[99] warn that properties derived from aggregate mobility analysis cannot be used to derive
regularities for individual movement. Along these lines, Gonzalez et al. [214] found that
the radius of gyration strongly differs for individual users (based on call detail records).
Similarly, Scellato et al. [433] studied LBSNs (Brightkite, Gowalla und Foursquare) and
observed strong heterogeneity across users with regard to different characteristic spatial
scales of interactions across both their social ties and social triads. And finally, even
across single individuals the temporal variability was found to vary from over 20% to
about 80% as Chen et al. reported in [99].

Demographics and user properties. Besides these general individual differences,
there are also specific demographic factors as well as individual user characteristics which
strongly influence human navigation behavior. For example, Kang et al. [268] studied
different user properties such as age, gender, and, call time profiles. Among other results,
they discovered differences in travel distances for younger and older people based on
mobile phone data. Similarly, Yan et al. [543] found that students and retirees exhibit
different movement behavior on travel survey data, and Kung et al. [294] formulated travel
models differentiating between long and short distance commuters to better represent
the observed data. There are also studies analyzing factors like the influence of gender
[522], a difference in mobility depending on social status [107] or income [143], temporal
aspects [201, 266, 267], or transportation mode [483].

Clusters and components. On a more general level, it has already been mentioned that
human mobility can be seen and interpreted as a (finite) set of factors, such as clusters [406],
eigenbehaviors [157], mobility networks [435], or factorized representations [393, 477].
One can define two ways of working with such components, either directly studying the
navigation behavior of predefined subgroups of the observed data (see the paragraph
about demographics and user properties above), or by finding factors or components of
human mobility based on movement properties (e.g., the range of a trip, the time of the
day, certain user properties, etc.) in an automated fashion in order to then interpret the
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corresponding semantics afterwards. An example for the latter is provided by Preoţiuc-
Pietro and Cohn [406], who clustered mobility based on transitions between activity
classes and assigned “human categories”, such as “student” or “workaholics”, to the resulting
behavioral clusters. Similarly, Espin Noboa et al. [166] interpreted sub-processes derived
from taxi traces using tensor factorization. Instead of interpreting the factors based
on intuition alone [as, e.g., 393, 477], they used HypTrails [453] in order to understand
the semantics underlying the respective mobility factors. In this thesis, we also heavily
exploit the interpretable nature of HypTrails for understanding homogeneous as well as
heterogeneous navigational processes (cf. Chapter 4 and part III).

2.1.6. Discussion and relation to this work

In this section, we covered related work on geo-spatial navigation behavior. This encom-
passed an overview of modeling approaches, a collection of regularities and patterns, as
well as a dedicated section on heterogeneity.

As mentioned in Section 2.1.5, many studies exist that analyze such heterogeneity
to some extent. However, there are no dedicated methods to analyze and explain the
corresponding heterogeneity in general. In contrast, in this thesis, we propose two novel
methods which directly embrace the notion of explainable heterogeneity. In particular, we
introduce the MixedTrails (Chapter 4) and the SubTrails (Chapter 5) approach as well
as several analysis tools (Chapter 6). MixedTrails allows for comparing understandable
hypotheses (from theory or intuition) about heterogeneous navigation processes, whereas
SubTrails enables the automated discovery of interpretable subgroups of sequence data
with exceptional transition behavior, thus, supporting the conception of novel hypotheses.

Besides heterogeneous aspects, Section 2.1.2 also illustrated that there are many different
data sources and application scenarios for which human mobility can be studied. In this
work, we contribute to this field of research by focusing on two specific case studies, i.e.,
we investigate human mobility based on Flickr photos (Chapter 7) and analyze navigation
patterns in a participatory sensing setting (Chapter 8). Studying Flickr photos has the
advantage that the recorded data represents events and carries background information on
the one hand, and, on the other hand, still provides a relatively high spatial and temporal
resolution. Also, human mobility in the context of (mobile) participatory sensing — which
we address in this work — is a seldom covered subject of research. While some work
exists, e.g., deriving air quality from human mobility patterns [e.g., 563], there are no
studies explicitly trying to understand the underlying processes involved in the observed
navigation behavior.

Overall, we contribute strongly to better understanding human navigation behavior in
the geo-spatial context. In particular, we introduce novel methodology which practitioners
and researchers can use to study human navigation behavior, and we provide novel
insights into human mobility by exploring the corresponding underlying processes in
unprecedented detail and in underrepresented application scenarios.

25



2. Current state of understanding human navigation behavior

2.2. Navigation on the web

The goal of navigation behavior analysis on the web is to understand the navigation
characteristics of users interacting with web resources from one or more web sites. The
resulting insights can then be applied to website construction, adaptation, and manage-
ment, marketing or personalization [cf. 5, 285]. Furthermore, there are many facets of
web navigation to consider ranging from navigation between websites, over intra webpage
navigation (e.g., navigation on Wikipedia), to the interactive processes between specific
concepts of a web-platform (e.g., how users listen to music on online platforms or choose
tasks on crowdsourcing systems).
In this section we first give an overview of early work on web navigation analysis

(Section 2.2.1), and follow up with a brief review of data sources and abstractions of
web navigation studied by previous work (Section 2.2.2). Afterwards, we cover some
prominent modeling approaches (Section 2.2.3), and go over a variety of patterns and
regularities which have been found in human navigation on the web (Section 2.2.4).
Then, we specifically review work on the heterogeneity of navigational processes which
corresponds to one of the main topic of this thesis (Section 2.2.5). Finally, Section 2.2.6
discusses the relation of our work to the previously reviewed studies.

2.2.1. Early work and overview

Some of the earliest work on navigational behavior “on the web” can be traced back
to the 1980’s [125, 485]. For example, Tolle [485] used a Markov model consisting of
abstract states like “ERROR” or “FIND” to represent transaction logs on online public
access catalogs (OPAC). He calculated state and transition probabilities in order to
study “the current utilization of OPACs”, i.e., how users interact with the system. Cove
and Walsh [125] identified different browsing behavior categories on text within a single
document, namely search browsing (goal driven), general purpose browsing (checking
interesting pages), and serendipitous browsing (random). While the previously mentioned
settings hardly correlate to browsing on the web, Carmel et al. [87] found similar browsing
categories on hypertext structures (i.e., analyzing Apple’s HyperCard on Macintosh).
In the same direction, Marchionini [340] studied navigational behavior on a full-text
electronic encyclopedia and found differences in navigation behavior (or “information
seeking”) between younger and older users (from a user base of third, fourth and six
graders). Such work is still very relevant and closely related to current research, e.g., on
the online encyclopedia Wikipedia [e.g., 144, 519].

However, as mentioned by Catledge and Pitkow [92], most of the early work mentioned
so far has not been conducted on the World Wide Web [59], which Catledge and Pitkow
describe as a “collaborative and exceedingly dynamic hypermedia system”. Thus, the
article “Characterizing Browsing Strategies in the World-Wide Web” by Catledge and
Pitkow in 1995 can be considered one of the first navigational behavior studies on the web.
Their goal was to derive “design and usability suggestions for WWW pages, sites and
browsers”. Based on descriptive analysis of log files from the XMosaic browser with over
43 000 events, they found user navigation patters on the web equivalent to the previously
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mentioned studies on closed (hypertext) systems [87, 125]: searching, general browsing,
and serendipitous browsing.

In the following years, many studies worked further understanding navigational behavior
on the web. The corresponding research can be roughly divided by the different approaches
being taken: Some researchers focused on modeling (closely coupled with prediction) [108,
429, 454] while others investigated regularities, patterns and strategies [4, 519, 523]. Also,
with the increasing number of services provided by the web, navigational studies greatly
expanded from investigating navigational processes between arbitrary websites to more
specialized concepts like navigation on Wikipedia articles [373, 454, 519], behavior on
social networks [51, 153], exploration of collections of music (e.g., on last.fm) [172, 312],
or task choosing characteristics on crowdsourcing platforms [40]. We cover a selection of
these studies in the following sections.

2.2.2. Navigational data on the web

While the traditional form of data for studying human navigation on the web is very
low-level, i.e., consisting for example of server, proxy, or client logs, there exists a variety
of abstractions depending on the application scenario. In this section, we briefly touch on
classic web log data and review some selected forms of abstracted web traffic studied in
the context of human navigation behavior.
Web logs. Studies on human navigation behavior on the web are traditionally concerned
with navigation processes represented by web logs collected for example by servers, proxies
and client programs. This includes work from the web usage mining community [123, 285,
467], which “focuses on techniques to predict user behavior while the user is interacting
with the web” [285]. For example, Mobasher et al. [361] used access logs from a newsletter
website for generating user profiles, and Liu et al. [326] and Meiss et al. [354] recommended
news and rank web pages based on click log files, respectively. Furthermore, Agosti et
al. [5] give an overview of applied web log analysis from web pages as well as digital
library systems ranging from 1983 to 2011. One of the issues in this context is to derive
abstract notions like users, server sessions, episodes, click-streams, and page views from
the recorded logs [355, 467]. For example, Cooley et al. [122] and Munk et al. [369] list a
set of pre-processing procedures and steps to derive more abstracts concepts from raw
log data. On a more abstract level, some web log datasets also only provide aggregated
information such as target and referrer counts [537].
Domains and abstractions. Often, work on human navigation behavior on the web
focuses on certain domains or abstractions of log data. For example, most studies only
had access to data from a certain set of web servers. Thus, they inherently were limited to
navigation in a specific context, e.g., Liu et al. [326] used web logs from a news platform
and Gündüz and Özsu [221] investigated on web logs from the NASA Kennedy Space
Center as well as logs from the Metro Baltimore-Washington DC area.
While such studies usually aim at providing results for general web usage behavior,

there exist many others focusing on certain domains studying and exploiting their specific
characteristics. For example, Lee et al. [305] studied click streams on online stores and
Bollen et al. [67] analyzed web logs from scientific publisher web portals building “maps
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of science”. Furthermore, current work on web navigation analysis focused on selected
applications like navigation on information networks [300, 489] (like Wikipedia [373, 454,
519]), folksonomies [145, 490], social networks [51, 153], or ontologies [501, 502, 503].
In such specialized cases, it often makes sense to employ more abstract notions than

actual page visits. For example in the case of Wikipedia, navigation between actual
articles can be studied (cf., Wikispeedia [520] or Wikigame17 [453, 489]) leaving out
other pages like category overviews or the start page. Similarly, corresponding work on
social bookmarking systems [cf. 145, 373] focuses on those web pages representing the
basic entities of a folksonomy instead of considering search or overview pages. In this
work, we also study the task-choosing behavior of workers on the crowdsourcing platform
Microworkers [40] (cf. Chapter 10) where the users’ interactions with the platform are also
logged on a more abstract level storing task subscriptions directly instead of lower-level
page interactions.

2.2.3. Modeling

The previous sections covered early work on web navigation as well as different domains
and data sources for observing various behavioral aspects. In order to explain the
observed data and to understand the corresponding underlying processes, many studies
apply modeling [e.g., 78, 253, 365], i.e., building systems for explaining the observed
phenomena. In this section, we cover important models for human navigation on the
web focusing on work that is closely related to this thesis, i.e., which is concerned with
trajectories as well as transition behavior. Specifically, we cover work applying Markov
models, which are one of the most widely used approaches for modeling web navigation,
as well as studies that employ the theory of information foraging, which models user
behavior as a search process in an information environment.

2.2.3.1. Markov models and memory processes

Markov models are one of the most prominent model classes employed to represent online
navigation behavior in the context of browsing trajectories and page transitions. In the
following, we review a selected number of studies applying Markov models to research
web navigation, and address the ongoing discussion of the appropriate memory-structure
of navigational processes on the web. For more technical details and methodological
extensions of Markov chains we refer to Section 3.2.
Applications. Descriptive and explorative work often studies transition probabilities
between states of a Markov chain: for example between user actions on online public
access catalogs [485], entities in folksonomies [145], or user behavior categories on social
networks [51]. Further analysis approaches include the application of Markov chains and
its corresponding extensions to clustering users by their behavior [e.g., 81, 406], or to
studying contextual states employing hidden Markov models [84].
Also, a well-known application of Markov models is the PageRank algorithm [387],

which uses a specialized Markov chain model for representing users surfing the web. In
17http://thewikigame.com/
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particular, it models users as random surfers on the link structure imposed by web pages
and ranks these pages according to the number of times each page is visited by these
surfers. Besides the ranking capabilities of this approach (applied to improving search
engines), Page et al. also estimated web traffic using this method. Furthermore, work by
Eirinaki et al. [161] employed the page rank of web sites to impose prior probabilities on
Markov chains for predicting user behavior. Generally, work on predicting distributional
properties, next-clicks, or links is numerous [402, 429, 567, 571], mostly with the goal to
enhance user experience, e.g., by enabling personalization.
Memory structures. Many of the previously mentioned studies try to go beyond
first-order Markov chains which assume that the next page a user visits only depends
on the current page. In other words, they explore higher order memory structures.
Indeed, considering different memory structures has a long history. For example, Pirolli
and Pitkow [402] found that, in their case, first-order Markov models performed best
for predicting user behavior in the context of predicting link choices. However, there
is an active discussion about the order of Markov chains to use when describing the
memory structures involved in navigational processes on the web [cf. 111, 454]: While the
first-order approach was often applied and confirmed by similar studies [321, 429], other
work employed more complex memory structures extending the first-order Markov chain
and reporting superior results. For example, Sen and Hansen [442] modeled navigation
behavior on the web using Markov models of first order, second order, and a mixed
variant, and found that second-order Markov models gave the best performance in their
scenario of predicting session lengths and unique pages per session. Similarly, Borges and
Levene analyzed variable-length Markov chains [71] and emphasized the importance of
higher-order structures [70, 72] by investigating prediction accuracy of next-link choice and
“summarization ability”. Others built approaches combining different orders of Markov
models to gain increased prediction accuracy and less model complexity [141, 571], or
use tree structures in combination with varying-order models [146]. Finally, Chierichetti
et al. [111] picked up on previous work and found cases where the (first-order) Markovian
property does not hold. Recently, Singer et al. [454] tried to shed light into this ongoing
debate about the depth of memory in web navigation by comparing different orders of
Markov chains based on a variety of statistical evaluation measures. They specifically
considered model complexity to mitigate overfitting effects [cf. 370], and, by doing so,
showed that first-order Markov chains are the most justifiable choice for page-to-page
navigation. At the same time, however, they also discovered that on a more abstract
level, i.e., navigation over topics, first-order chains may not suffice to model navigation
behavior. Note, that there is also work in the human mobility domain (as covered in
Section 2.1) discussing similar issues [cf., 345].

2.2.3.2. Information foraging

Coming from a psychological background rather than a technical one [182], a very specific
set of models has emerged around the theory of “information foraging” [401], which
considers online navigation as a search process. In particular, this theory assumes that
humans searching for information on the web behave similar to animals searching for
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food. Consequently, the models based on information foraging all incorporate a variant
of information scent, which “is the subjective sense of value and cost of accessing a
page based on perceptual cues” [108]. There are several applications employing the
notion of information scent. For example, Chi et al. [108] described two algorithms: one
for simulating the paths of web users and another for inferring the information need
responsible for an observed path. The theory of information foraging and the concept
of information scent were further studied, extended, or implemented by a variety of
researchers resulting, for example, in the CoLiDeS model by Kitajima et al. [280], the
MESA model by Miller and Remington [358], or the SNIF-ACT models by Fu and Pirolli
[182]. Furthermore, the ScentTrails approach [385] highlights hyperlinks to indicate paths
to nicely smelling18 search results. Another concept closely related to information scent is
the notion of “orienteering” [381]. Applied to the world wide web [481] this corresponds to
the process of starting with a set of rather general pages and then “using both prior and
contextual information to close in on the actual information target, often in a series of
steps, without specifying the entire information need up front”. A quite similar description
of user navigation in the context of searching for information is “berry-picking” [38], which
refers to the process of “bit-at-a-time retrieval”. In other words, user identify useful bits
of information and select references while searching the web step-by-step and constantly
adjusting their queries. Indeed, subsequent work [524] found that following trails to satisfy
one’s information need (instead of directly arriving at the destination of a search) has
value with regard to relevance, topic coverage, topic diversity, novelty, and utility.

2.2.4. Regularities and patterns

Besides modeling the overall processes of user trajectories and transition behavior on the
web (as covered in Section 2.2.3), there are also studies about online navigation analysis
which focus more on discovering regularities and patterns within navigational data. In the
following, we cover several findings from such studies. The variety of results across several
dimensions — including structural and temporal aspects, navigation types and strategies,
as well as semantics — implicates the complexity of human behavior and illustrates the
need for further studies in this subject which we contribute to in this thesis.

2.2.4.1. Structural and temporal aspects

Human navigation behavior exhibits strong structural as well as temporal regularities. In
the following, we address both dimensions.

Structural aspects. On a structural level, Huberman et al. [253] found that the
frequency of website hits follows a “Zipf-like distribution”, i.e., there is a small number
of highly visited pages with a power-law governed drop-off towards pages which are
visited less often. Similar distributional properties were observed to hold for the length
of navigation trails [253, 316]. This observation has been called the “universal law of
web surfing” and was confirmed for mobile web navigation as well [225]. Furthermore,

18Checking . . . all good!
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depending on the characteristics of the corresponding trails, Catledge and Pitkow [92]
discovered that web pages can be characterized according to their usage patterns.
Temporal aspects. On the temporal level, Agarwal et al. [4] and Matsubara et al.
[348] observed certain temporal click and navigation patterns. Such patterns especially
include cyclic activity over time as also found by Zaiane et al. [550]. Agarwal et al. also
observed differing activity levels of users from the US and international users during
day and night. Furthermore, they found an activity decay in visitation frequencies over
time which they attributed to repeated exposure to the same content. Also, Wu and
Huberman [533] observed similar attention decays attributing them to the novelty of a
story which decreases over time. In the same direction, Zaiane et al. [550] detected a
tendency of users of a collaborative teaching and learning environment to initially explore
the features of the system while becoming more and more focused over time. A similar
convergence effect on the smaller, session time-scale can also be observed when playing
the game Wikispeedia [519] where individuals first navigate to general articles and get
more specific as the search progresses. Also studying temporal aspects of web navigation,
Matsubara et al. [348] analyzed the temporal evolution of different topics such as “media”
or “business”. They found topical preferences by the time of the day and depending on
weekdays. For example, “food”-related URLs are more frequently visited right before
dinner time and “communication”-related topics are more common in the late evening.
Furthermore, on a semantic level, Yang et al. [545] studied so called “progression stages”
along navigation trails on the web. In particular, they proposed an approach to identify
semantic units, such as “US presidents” or “countries”, which users progress through during
a session. Finally, in the context of navigation prediction and personalization, models
often incorporate temporal dependencies [1, 226].

2.2.4.2. Navigation characteristics

Besides the general structural and temporal aspects covered in the previous section, there
are also specific strategies users apply when navigating the web. In the following, we cover
several of such strategies in various application domains including general navigation
characteristics, subprocesses of navigation, backtracking and revisitation patterns, as well
as some other strategies observed for human navigation behavior on the web.
Navigation characteristics. Navigating the web, i.e., “browsing”, is generally made
up of following links and backtracking [517] and has been studied as early as 1998 by
Huberman et al. [253]. They observed that users proceed to another page as long the
“the value of the current page exceeds a threshold”. Furthermore, Weinreich et al. [517]
found that following links is the most common “navigation action” (as opposed to, e.g.,
backtracking) and, thus, that web navigation is a “rapidly interactive process” with regard
to the frequency of clicks. Benevenuto et al. [51] confirmed the prevalence of browsing
on the social network Orkut where it made up more then 90% of the users’ activities.
One possible reason for this is given by White and Huang [524] who found that, in
an information environment such as the web, browsing in general is a practice worth
pursuing since — in contrast to directly accessing a page — following links (and thus
following a search trail) is a strategy often more useful with regard to topic coverage,
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diversity, novelty, and utility. Similarly, Downey et al. [148] concluded that pursuing
links is especially useful when the user has an “information goal” that is rare, i.e., not
commonly searched for.

Sub-processes. Navigating the web it is not a homogeneous process. Instead, it
subsumes a variety of characteristics. For example, some of the earliest work on web-like
structures has found different classes of navigation behavior. That is, Catledge and Pitkow
[92] confirmed and characterized different navigation strategies, namely “serendipitous
browsing”, “general purpose browsing” and “search browsing”, which have been previously
found in different contexts by Carmel et al. [87] and Cove and Walsh [125]. Similarly,
White and Drucker [523] categorized web users into “explorers” and “navigators”, whereas
Choo et al. [117] distinguished between various behavior modes and moves in the context
of information seeking. More recently, Phoa and Sanchez [397] also established three user
groups relevant for their approach: accidental users, regular users, and power users.

Backtracking and revisitation. As previously mentioned, Weinreich et al. [517] argued
that backtracking is less common with more modern browsers. However, Scaria et al.
[432] found that for certain tasks, i.e., in this case for navigating Wikipedia, it plays
an important role. There are also quite a few studies analyzing revisitation patterns
in general [3, 383, 480]. For example Obendorf et al. [383] distinguished between three
revisitation patterns, namely short-, mid-, and long-term revisits, which represent the
notions of backtracking/undoing, reutilizing/observing, and rediscovering, respectively.

Other strategies. There is also a variety of other strategies and characteristics of web
navigation. For example, users tend to follow the already mentioned information scent
(Section 2.2.3.2), they often employ their context knowledge instead of exclusively using
keyword-based search [481], they leverage semantic relations (also see Section 2.2.4.3), or
show a tendency to stray from shortest paths [519]. Thus, overall, individual navigation
strategies can “differ dramatically and are strongly influenced by personal habits and type
of site visited” [383]. We further emphasize this inherent heterogeneity in Section 2.2.5.

2.2.4.3. Semantics

Semantics, i.e., the similarity or relatedness of words and concepts, is an important factor
when analyzing human navigation behavior on the web. Indeed, as argued below, it was
shown that semantics are an integral part of navigation strategies on the one hand, and,
on the other hand, the semantic information inherent to the corresponding navigation
trails can be recovered using appropriate methods.

Semantics are part of navigation strategies. Many of the models and strategies
employed by humans navigating the web are in some form based on semantics. For example,
the strategy users employ to find a certain article by following links on Wikipedia is
governed by semantic similarity [41, 519]. Related notions can be found for navigation on
online folksonomies [373], or task choosing behavior on crowdsourcing platforms [40]. Also,
the concept of information foraging and information scent strongly relies on semantics “to
account for a user’s efficiency in traversing a Web structure” [265]. Similarly, progression
stages of user session studied by Yang et al. [545] are characterized by semantic homogeneity.
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Brumby and Howes [77] also incorporated semantic similarity in their model for web
navigation and early work by Pierce et al. [398] found that for menu item selection
semantic relatedness of the menu items plays an important role. On a more structured
level, there is even work on incorporating ontologies to model navigation processes [300].
Thus, overall, semantics are present on many layers of the navigational processes we can
observe on the web.
Navigation behavior yields semantics. The inherent semantics of navigational
processes on the web also become clear when considering application oriented work, e.g.,
by Chalmers et al. [98] or Bilenko and White [62]. In particular, Chalmers et al. used
navigation path information for calculating (semantic) similarity between URLs and
Bilenko and White used information about the browsing activity after a search as a
feature “in learning to rank for Web search”, i.e., for improving the results a search engine.
Other studies employed search queries and information about the subsequently chosen web
pages to extract rich semantic relations by building folksonomic structures [31, 57, 286].
Emphasizing the inherent semantic characteristics of human navigation on the web even
more, current work took the approach of calculating semantic relatedness between words
and concepts directly from navigation logs, e.g., in the form of word embeddings [536].
Prominently, Dallmann et al. [132], Niebler et al. [374], and Singer et al. [455] extracted
semantic relatedness from navigation trails on Wikipedia.

2.2.5. Heterogeneity

Studies on human navigation behavior are part of the general research area of web
usage mining [123], which is concerned with “user interactions with Web resources on
one or more Web sites” [324]. There, one of the main applications of analyzing human
navigation is learning user profiles and personalized user models [285]. This already
indicates that the underlying navigation processes are inherently not homogeneous and
differ greatly from user to user. The regularities and patterns discussed in the previous
section, like the three types of browsing (general, serendipitous, and search), already
give some prominent examples of this fact. In the following, we first review already
covered components of human navigation behavior from Section 2.2.3 and Section 2.2.4,
emphasizing the heterogeneous nature of navigational processes on the web. We follow up
with several other studies further illustrating the existence of sub-processes in browsing
and their differences based on the websites and platforms being used, demographics and
user properties, as well as automatically generated clusters.
Browsing types, temporal factors, and topics. First off, we revisit some studies
listed in Section 2.2.4.1, emphasizing the inherent heterogeneous nature of navigation
on web-like structures [87, 92, 117, 125, 397, 523]. Most prominently, we cited Catledge
and Pitkow who found browsing to have three sub-components, namely “serendipitous
browsing”, “general purpose browsing” and “search browsing”. We have also already
discussed temporal aspects of user navigation exhibiting heterogeneous properties including
diverging temporal activity patterns for different countries [4] as well as general topic shifts
over time [348]. On a session-level, Yang et al. [545] studied evolving topic stages resulting
in sequences of semantic units and West and Leskovec [519] and Zaiane et al. [550] found
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a shift from an exploration phase to more focused utilization of the respective information
environment. Finally, beyond singular patterns, models for navigation processes also often
incorporate temporal dependencies [1, 226], e.g., for prediction or personalization.

Platforms and usage aspects. In addition to these general behavioral patterns,
navigation behavior also differs depending on the service being used. Prominent examples
are social networks. In particular, Benevenuto et al. [51] and Schneider et al. [436] both
compared different social networks and found deviating characteristics in activities and
session properties. Taking a different point of view, Dunn et al. [153] investigated the
difference between online social networks (OSN) and search engines. There, the results
showed that users tend to stay on OSNs longer than on search engines and navigate to
less popular and different types of web pages from OSNs.

Demographics and user properties. In addition to the previously covered studies,
there are also other results which emphasize the heterogeneity of human navigation
on the web. In particular, the notion of demographics has been recognized to play an
important role when considering web navigation, especially with regard to optimizing
user experience [97, 353]. For example, one of the most straight-forward influence factors
on human performance when searching and browsing the web is the age or the gender of
individuals [340, 350, 353, 500]. For example Marchionini [340] found that a difference
in search behavior depending on age (on a full-text electronic encyclopedia), and in the
work by Mead et al. [353] older adults were found to be “less efficient and somewhat less
successful than younger adults when searching a 19-page Web site for the answers to
specific questions”. Extending such studies, Goel et al. [208] analyzed an extensive set of
user attributes including education, gender, income, or age, and even found that properties
like ethnicity and income can be inferred from browsing histories. Furthermore, literacy
was discovered to influence navigation behavior by Zarcadoolas et al. [553] who identified
“specific navigational issues” that present barriers to low-literate adults. Similarly, Stanney
and Salvendy [471] studied how individuals who have a low ability to perceive spatial
patterns can be supported when navigating the web. Juvina and Oostendorp [264]
incorporated and extended these studies in their work and found that domain expertise,
spatial ability, working memory, motivation, and interest are important determinants of
task outcomes and thus ultimately influence navigation behavior.

Clusters and components. The previously mentioned studies indicate certain cat-
egories of web navigation characteristics. In web navigation research, or web usage
mining, a common understanding is that establishing user groups can help to infer “user
demographics in order to perform market segmentation in e-commerce applications or
to provide personalized Web content to the users” [467]. To this end, a wide array of
clustering algorithms exists [183, 221, 460, 475, 506] also covering other applications
such as improving page performance or detecting spammers. For example, Wang et al.
[506] analyzed the difference between clickstreams of real users and fake accounts on the
Chinese social network “Renren”. Besides finding different characteristics in the number of
sessions per user, average session length in seconds and clicks, or the average inter-arrival
time, they derived behavioral clusters based on navigation traces which they used to
classify fake accounts. In general, clustering user navigation traces on the web has a long
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history. For instance, as early as 1996, Yan et al. [541] already clusterd user behavior
based on access logs and claimed that the corresponding clusters were “not apparent from
the physical linkage of the pages, and, thus would not be identified without looking at the
[web] logs”. Along the same lines, Cadez et al. [81] and Kumbaroska and Mitrevski [293]
clustered users by navigation paths using a model based approach (instead of a distance
based one). They visualized the clusters, finding different page category preferences.
Another approach (similar to MixedTrails in Chapter 4) specifically employed a mixture
of first-order Markov chains [81]. There are also clustering approaches which allow to
interpret the clusters in order to detect, classify or explain interesting user behavior. For
example, Barab et al. [34] established four classes of navigational performance (“models
users”, “disenchanted volunteers”, “feature explorers”, and “cyber cartographers”), and
Wang et al. [507] found unexpected or interesting sub-clusters such as inactive users or
users with hostile behavior.

2.2.6. Discussion and relation to this work

Analogously to navigation on the web (cf. Section 2.1), we covered several aspects of
web navigation analysis with respect to early work, data, regularities and patterns, as
well as heterogeneity. Especially Section 2.2.4 and Section 2.2.5 emphasized the inherent
heterogeneity of human navigation behavior. This means that there is no single underlying
process explaining the observed data. Rather, there is a multitude of factors which may
influence navigation strategies and characteristics.

While we covered some work which studies these factors, there are no general methods
dedicated to analyzing and understanding such heterogeneity. To this end, this thesis
introduces the MixedTrails (Chapter 4) and the SubTrails (Chapter 5) approach, as well
as several analysis tools (Chapter 6). In particular, MixedTrails allows for comparing
understandable hypotheses (from theory or intuition) about heterogeneous sequence data,
and SubTrails, enables the discovery of interpretable subgroups of sequence data with
exceptional transition behavior.
Additionally, Section 2.2.2 illustrated that web navigation analysis can cover a large

array of data types, abstractions, and application domains. These domains ever expand
and new application domains or systems emerge for which novel kinds of navigation
characteristics have to be investigated. In this context, Agosti et al. [5] mention a set of
future trends for web log analysis, including research on social bookmarking systems (e.g.,
Delicious19 and BibSonomy20), as well as the increasing focus on online encyclopedias
like Wikipedia21. Matching these predictions, in this thesis, we contribute a study on the
social bookmarking system BibSonomy (see Chapter 9), and an exemplary case study on
Wikipedia navigation (see Section 11.2). Additionally, we add to the already large array of
different application domains by analyzing task-choosing behavior on the crowdsourcing
platform Microworkers (Chapter 10), as well as music listening trails (see Section 11.3).
Overall, this thesis builds on the previous work covered in the sections above and

19https://delicious.com
20https://bibsonomy.org
21https://wikipedia.org
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contributes strongly to understanding of human behavior on the web by introducing novel
methods for analyzing heterogeneous navigation processes, and provides corresponding
insights for researchers and practitioners on several interesting application domains.
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In this thesis, our goal is to analyze and understand human navigation behavior, be it in
a geo-spatial context or on the web. To this end, we employ a specific set of underlying
concepts which we introduce in this section.

In particular, we first introduce the notion of discrete navigation processes (Section 3.1)
as the general setting in which we study human navigation behavior. That is, we argue
to use sequences over a discrete state space as the unifying framework (Section 3.1.1),
and emphasize the necessity of background information to cope with the multitude of
underlying aspects and different contexts of navigational processes (Section 3.1.2). Thus,
using background information to explain observed discrete navigation data is the main idea
of this thesis. In the following section, we then review several methodological approaches
applied throughout this work, i.e., Markov chains (Section 3.2), the HypTrails approach
(Section 3.3.2), as well as exceptional model mining (Section 3.4.1). Specifically, we start
with defining Markov chains which represent the core concept employed by this thesis.
Then, we cover HypTrails, a Bayesian approach for comparing hypotheses about human
navigation trails, which we extend to cope for heterogeneous hypotheses (cf. Chapter 4)
and apply extensively in our case studies (cf. Part III). Finally, Exceptional model mining
is the basis for our second methodological contribution called SubTrails (Chapter 5), a
method for discovering subgroups with exceptional transition behavior. For a general
overview on notations in the context of discrete navigational data and Markov chains, we
refer to Table A.1.

3.1. Data for understanding discrete navigation

In this thesis, we aim to understand human navigation behavior in various application
domains, i.e., geo-spatial navigation, and navigation on the web (cf. Chapter 1). To study
these domains in a unified manner, we apply the concept of discrete navigation behavior,
and employ background information to explain the observed data. In this section, we
first introduce the notion of discrete navigation data (Section 3.1.1), and then give an
overview of relevant background information (Section 3.1.2).

3.1.1. Discrete navigational data

At first glance, geo-spatial navigation and navigation on the web — which we study in
this thesis — appear to be fundamentally different instantiations of human navigation
behavior. That is, generally, geo-spatial navigation is part of our physical experience
while navigation on the web is a virtual process. Also, on a technical level, the former
is embedded into the continuous space of the real world while navigation on the web is
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D = {palice, pbob}
S = {scentral, stimes, sstatue, sempire}

palice = [scentral, stimes, sstatue, scentral, stimes]
pbob = [sstatue, sempire, scentral, stimes]

scentral sempire

stimes sstatue

Figure 3.1.: Example for discrete navigational data. This figure shows a path dataset D
based on state space S of locations in New York City (Central Park, Times Square, Statue of
Liberty, Empire State Building). The dataset contains two paths, one by Alice (palice) and one
by Bob (pbob). Alice starts at Central Station scentral and Bob at the Statue of Liberty sstatue.

restricted to a discrete set of web pages (cf. Figure 1.1 in Chapter 1). However, many
studies in the context of geo-spatial human mobility do not directly study navigation
processes in such a continuous manner. Instead, they often use data from call detail
records which are restricted to a discrete set of cell towers [e.g., 214], or they study
check-in sequences from location-based social networks where navigation is restricted
to adiscrete set of venues [e.g., 378]. And even when GPS tracks are analyzed, which
are not restricted to a discrete state space, these tracks are often discretized, either in a
preprocessing step [e.g., 202, 271] or inherently by the applied methodology [202]. Overall,
discretization is a natural process since human behavior in a geo-spatial context is dictated
by concrete places, venues, or activities which are often bound to certain locations. Thus,
while we may loose some information on local details of human mobility, it is reasonable
to describe the underlying processes based on a discrete state space. For this thesis, this
allows us to formulate a general framework based on discrete navigation which covers
geo-spatial human behavior as well as navigation on the web using the same methodology.

Definition 1 (Discrete navigational data). In this work, we consider navigational behavior
on a finite state space S = {s1, . . . , sn}. The navigational data we observe on such a
state space consists of a (possibly very large) set of paths D (also called sequences or
trails) generated by a set of individuals U (also referred to as users). Each path p ∈ P
is a sequence of states p = [sτ1 , . . . , sτnp ] where np > 1 is the number of states visited by
path p. A path can include each state several times. A path p can also be represented
as a sequence of transitions p = [tτ1,τ2 , tτ2,τ3 , . . . , tτnp−1,τnp ] where tτi,τi+1 = (sτi , sτi+1)
represents a pair of states. We also write ti,j for a transition from state si to sj.

Example 1 (Discrete navigational data). An example of a path dataset D is shown
in Figure 3.1. It depicts a state space S of locations in Manhattan and two paths with
individual lengths by different users.

State spaces. State spaces, on for discrete navigation data, can be defined in a very
flexible manner. That is, there are many variants which represent different levels of
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GPS
trace Grid cells Venues

Browsing
trace Categories

(a) Geo-spatial navigation

GPS
trace Grid cells Venues

Browsing
trace Categories

(b) Online navigation

Figure 3.2.: An illustration of different state spaces for human navigation. The figure
shows raw data as well as different state spaces for human navigation behavior in a geo-spatial
context (a) as well as on the web (b). In this work, we focus on methods for discrete, finite state
spaces. Thus, for the continuous geo-spatial case, navigation traces, e.g., from a GPS, need to
be discretized. (a) shows a grid-based and a venue-based discretization approach. For online
navigation, web pages form a natural state space. However, different levels of abstraction may still
make sense. (b) shows how navigation on articles on Wikipedia can be abstracted to navigation
over categories. Choosing a discretized settings allows for applying the same methodology to
both settings (geo-spatial as well as online navigation), and investigating different abstraction
layers results in a more intricate understanding of human navigation behavior in general.

navigation on the same underlying data. Consider Figure 3.2 where we illustrate different
state spaces with corresponding paths for geo-spatial as well as online navigation.

Figure 3.2a shows a GPS trace from a user exploring Manhattan. To apply the discrete
setting this continuous trace needs to be discretized, i.e., each position is mapped to one
of a finite set of states. There are many different variants to do this. The figure shows
two of them: discretization i) by using a grid where states correspond to grid cells the
users pass through, or ii) by considering venues where each state represents a venue that
users may visit. Further variants of discretizing the geo-spatial space include, for example,
other semantic discretizations (like venues) obtained from background information (e.g.,
tracts or neighborhoods) or using clustering approaches [e.g., 202, 312]. It is apparent that
the choice of the state space strongly depends on the data as well as conceptual level of
human mobility at interest. The grid-based approach may be more useful for fine-grained
navigation behavior while a venue based approach focuses on the more semantic level
of navigation between meaningful places. Both tackle the process of human mobility
on different levels thus each helping to understand different facets of human navigation
behavior. See, for example, Chapter 7 where we employ grid-based as well as tract-based
discretization. For an example of a venue based study, we refer to Noulas et al. [378].

Navigation on the web poses similar challenges. Figure 3.2b shows a browsing trace, e.g.,
from a user navigating articles on Wikipedia [cf. 519]. There, the depicted “browsing trace”
can be directly used in a discretized navigation study by considering the visited websites
as states. However, even though a natural state space arises in the context of online
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navigation, there are still different levels of navigation to be studied. For example, it may
be interesting how users navigate between categories instead of articles on Wikipedia.
Figure 3.2b shows the corresponding abstraction. Along the same line, one of the earliest
articles on online navigation [485] studied a state space of user actions instead of using
the actual pages as underlying concepts.
It becomes apparent that the state space to study is highly flexible and can help to

gain insights into many facets of human navigation behavior. Note however, that the
choice of a specific set of states is not a trivial one. For example, studies in the geo-spatial
context have recognized the “modifiable areal unit problem” (MAUP) [257, 534] which
refers to the problem of choosing appropriate areal units in order to study aggregate
statistics. MAUP consists of two effects: the scale and the zoning effect. The former
refers to variations due to the level of aggregation to be studied, e.g., by altering the size
of the cells in a grid based discretization approach. The latter refers to variations due to
the choice of which data points are aggregated, e.g., by altering the coordinates where
the boundaries of a grid are placed. The same effects can be observed when aggregating
fine-grained state spaces into more coarse ones as has been done in Figure 3.2b. This
makes the MAUP also relevant for the field of web navigation.

Nevertheless, actual observations (such as GPS traces or fine-grained views on navigation
on the web) can and need to be abstracted to be able to efficiently formulate hypotheses
about human navigation. Thus, we need to make sure to carefully choose an appropriate
state space in order to produce results that match the facets of human navigation behavior
to be analyzed.
Summary. In this work, we choose a discretized setting for analyzing navigation pro-
cesses. This allows us to study a very diverse range of different levels and facets of
human navigation behavior using the same methodology. Exploiting this fact, we develop
versatile, novel methods and tools to analyze navigation based on first-order Markov
models which generally require a discrete state space, cf. MixedTrails (Chapter 4) or
SubTrails (Chapter 5). We also leverage the tight coupling of geo-spatial and online
navigation (cf. Figure 3.2). For example, the venues a user visits while exploring Manhat-
tan (Figure 3.2a), may also visit the corresponding articles on Wikipedia (Figure 3.2b).
For example, in Chapter 7 we incorporate knowledge about visitation patterns of venues
on Wikipedia into navigation hypotheses explaining geo-spatial navigation processes.

3.1.2. Background data

Independent of the method, it is evident that — in addition to data containing navigation
paths of users over a set of states — further information, i.e., background data, is needed
to explain navigational behavior. This specifically includes properties of states, users,
as well as paths and their individual transitions. These properties can be drawn from a
multitude of sources. They may materialize as simple binary, categorical or real-valued
attributes. However, they may also incorporate complex relations given by background
information such as semantics [e.g., 373] or ontologies [e.g., 300].

In this section, we give a non-exhaustive list of possibly relevant background information
when modeling human navigation behavior, e.g., for formulating specific hypotheses about

40



3.1. Data for understanding discrete navigation

human mobility (cf. Chapter 7) or web navigation (cf., Chapter 9 or Section 11.2). For
more information on additional factors which may influence human navigation behavior,
we also refer to the sections covering respective related work (e.g., Sections 2.1.4, 2.1.5,
2.2.4 and 2.2.5).
States. In discrete navigation processes, states can have very specific properties. For
example, categories of states play an important role: in the geo-spatial context, we may
consider venue categories such as public transport for the Central Station (in New York)
or touristic for the Statue of Liberty. Then, one hypothesis may state that transitions
from public transport hubs will likely have their destination at areas with many office
buildings, while transitions from touristic venues will favor other touristic destinations.
Similarly, state categories also play an important role in web navigation. For example, in
Chapter 9, we consider the website categories: resource, user, and tag pages.
Besides these straightforward examples, state properties can also include information

on more complex procedures: For states in the geo-spatial context, we may consider to
embed venues into its geographical context such as transportation networks, e.g., in order
to derive actual vs. effective distance. In the context of navigation on the web, similar
distance measures may be derived based on semantic similarity of states or ontologies
embeddings (see West and Leskovec [519], Lamprecht et al. [300], or Chapter 10).
Users. Similar to states, individual users can be associated with properties which
strongly influence their navigation behavior. Again, categories play an important role. For
example, in the geo-spatial context, we may consider tourists vs. locals (cf. Chapter 7) and
formulate a hypothesis that says that tourists are more likely to move towards touristic
locations than locals. And in the context of web navigation, in Chapter 9, we study
several user groups, e.g, based on gender or usage patterns. We have covered further
examples of the influence of user categories in Sections 2.1.5 and 2.2.5.
Similar to states, users can also be described using more complex processes. For

example, we may derive properties based on interactions or sentiments on social networks,
such as friendship relations or emotional ties [116].
Paths. Besides states and users, individual paths (as a collection of transitions) may also
exhibit specific properties. One of the properties of paths which can be used to explain
the observed sequence of states is its purpose or corresponding incentives. For example,
in the geo-spatial context, the purpose of one path may be to get to work, while another
path is the result of a leisurely stroll through a park. The sequence of states and the
probabilities of transitions will most likely be vastly different [e.g., 435]. Other interesting
path properties may include the length of the path, or the time required for completing
it. Similarly, for online behavior there are differences depending on the purpose of the
navigational process, e.g., browsing vs. searching [e.g., 92].
Transitions. On a more fine-grained level, each individual transition within a path also
exhibits inherent properties, such as the mode of travel [e.g., 483] (in the geo-spatial
context), the start and stop time, or the position within the path (see, e.g., West and
Leskovec [519] or Section 11.2 in the context of search behavior on Wikipedia).
Time. Navigational processes are strongly intertwined with time. For example considering
navigation on Wikipedia, articles and links are constantly created or deleted. This results
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in differing availabilities depending on the time of a transition. Similarly, in Chapter 10,
we consider tasks-choosing in a crowdsourcing environment where the corresponding
campaigns are only available for limited amount of time. In a geo-spatial setting, touristic
venues may only attract tourists during their opening hours. Also, the same user may visit
a city for a business meeting at one time and be a tourist at the other, which may result in
strongly differing navigation paths. Finally, navigational processes in a geo-spatial setting
strongly differ when comparing rush hours and night time, or weekdays and weekends.

History. Navigational behavior of an individual can change within a single path. For
example, in the geo-spatial setting, a tourist may more likely visit locations which are
close to subway stations if she has walked the first half of the day, while a tourist who
started with a bus tour may still be more inclined to walk to places not reachable by
another mode of travel. In Chapter 4, we consider a similar example in a synthetic setting,
where “walkers” choose from red and blue states as their next destination depending on
the history of colors of the states they have already visited.

Semantics and knowledge. As indicated above, semantic relations, e.g., between states
(web sites, places, etc.), can be helpful in explaining human navigation. In particular, in
this work, we use the notion of semantics in many of our studies to explain observed
behavior. For example, we show that crowdsourcing workers prefer to work on semantically
similar tasks. Also see Chapters 9 and 10 and Section 11.2 for further application areas. In
those cases, we use the rather basic notion of semantic similarity based on cosine-distance
between TF-IDF representations of textual descriptions.

However, this is a very limited definition of semantics. That is, the notion of semantics
is often used, especially in the context of the semantic web [60, 337], and can represent
more detailed concepts. For example, information such as article1 Cites article2 or
category1 IsSubfieldOf category2 may help to explain behavior on publication management
systems like BibSonomy (cf. Chapter 9). There is a wide range of work, defining and
generalizing this notion to advanced structures like ontologies and knowledge bases [468].
We believe that such knowledge representations can be used to formulate intricate

behavioral hypotheses, thus, further advancing the understanding of human navigation.
However, this task is trivial and is out of the scope of this work.

Summary. In this section, we have listed a small portion of the wide variety of background
information which is essential for explaining human navigation behavior, ranging from
state and user properties, over path and transition properties, to their inherent dynamics.
We use many of the listed properties in our case studies and, thus, refer to Part III for
detailed examples.

3.2. Markov chain modeling

Markov chains, named after a study by A. A. Markov in 1913 [341], were used to model
stochastic processes in a wide variety of domains, such as speech recognition [410], bio-
informatics [272, 470], or weather prediction [186]. In particular, this also includes human
navigation on the web [e.g., 454] and geo-spatial mobility [e.g., 189]. We also build upon
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Markov chains in this thesis: We introduce novel methodology for understanding human
navigation and mobility (Part II), and study various application scenarios (Part III).
In this section, review the corresponding methodological basics on Markov chain

modeling. That is, we first formally define Markov chain models, and then — in order to
give a broader overview — cover some applications and extensions relevant in the field of
human navigation and mobility.

3.2.1. Markov chains

In this thesis, we use Markov chains to model discrete navigational data as introduced
in Section 3.1.1. In the following, we first define Markov chain models formally1, and
secondly introduce the construct of transition count matrices which are required for
practically applying Markov chains in several use cases.

Definition 2 (Markov chain). Given a finite, discrete state space S = {s1, . . . , sn} (cf.
Definition 1), a Markov chain models finite sequences of random variables of variable
length X1, X2, . . . with values from state space S. These variables abide by the Markovian
property, i.e., the next state is only dependent on the previous state. Formally, we write:

Pr(Xτ+1 = sj | X1 = si1 , X2 = si2 , . . . , Xτ = siτ ) (3.1)
= Pr(Xτ+1 = sj | Xτ = siτ ) (3.2)
= Pr(sj |si) (3.3)
= θi,j (3.4)

Here, Pr(sj |si) and θi,j are short notations for the transition probability Pr(Xτ+1 =
sj | Xτ = si) from state si to sj. The transition probabilities between all pairs of states
(si, sj) can be subsumed in a stochastic matrix θ = (θi,j), i.e., each row sums up to 1:∑

j θi,j = 1. Thus, overall a Markov chain is defined by a state space and the corresponding
transition probabilities: M = (S,θ).2

Example 2 (Markov chain). We use the same state space as from Figure 3.1 in Sec-
tion 3.1.1 to to construct an example of a Markov chain: The state space S consists of a set
of venues in Manhattan, e.g., the Central Park scentral, the Times Square stimes, the Statue
of Liberty sstatue, and the Empire State Building sempire. People moving between these
venues (either offline, in the case of people, e.g., exploring New York as tourists, or online,
in the case of people browsing, e.g., Wikipedia) exhibit sequences of states instantiating
a sequence of random variables X1, X2, . . .. Figure 3.3 visualizes a corresponding state
space S with (arbitrarily chosen) transition probabilities θ = (θi,j). It also shows user

1While there are other variants of Markov processes (e.g., continuous time, or continuous space
models) [422], we focus on a finite, discrete state space and discrete time. We refer to this specific
notion of Markov processes as a Markov chain (model).

2Note that other work explicitly models the probability of the first state (e.g., Singer et al. [454]).
However, this can be implicitly included by introducing a special start state for each sequence with
appropriate transition probabilities. Similarly, when sampling from a Markov chain, it can make sense
to model a stop state which signifies the end of a sequence.
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Markov chain modelM = (S,θ), with
S = {scentral, stimes, sstatue, sempire}

θ =

0 1 0 0
1/4 1/4 1/2 0
2/3 0 0 1/3

1 0 0 0




1/4

1

1 1/4 2/3 1/3

1/2

palice = [ scentral, stimes, sstatue, scentral, stimes ]

X1 X2

1

X3

1/4

1/4

2/4

X4

1/4

2/4

X5

1

Figure 3.3.: An example of a Markov chain. We show Markov chain M = (S,θ), with
state space S = {scentral, stimes, sstatue, sempire} and transition probabilities θ. The Markov chain
is visualized as a graph (right), where transition probabilities of 0 are omitted. At the bottom
we illustrate how user Alice generates a path palice by starting at state scentral and randomly
choosing subsequent states based on the given transition probabilities θ.

“Alice” generating a path by starting at state scentral and randomly choosing subsequent
states based on the transition probabilities given by the Markov chain.

In this thesis, we encounter Markov chains in two scenarios: i) for comparing hypotheses
about human navigation (cf. HypTrails in Section 3.3.2 and our own approach MixedTrails
introduced in Chapter 4), and ii) in the context of our pattern mining approach for
discovering subgroups with exceptional transition behavior (Chapter 5). In both cases,
transition counts matrices play an important role.

Definition 3 (Transition count matrix). Given a path dataset D = [p1, . . . , pm] as
formalized in Definition 1, with paths being represented as sequences of transitions p =
[tτ1,τ2 , tτ2,τ3 , . . . , tτnp−1 ,τnp

], the corresponding transition count matrix TD is given as:

TD = (ni,j) =

∑
p∈D

∑
ti,j∈p

1

 (3.5)

Here, TD is a matrix where each entry ni,j represents the number of transitions observed
between each pair of states (si, sj) over all paths p ∈ D.
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Example 3 (Transition count matrix). As an example, given the path dataset D =
{palice, pbob} from Figure 3.1 in Section 3.1.1 with

palice =[scentral, stimes, sstatue, scentral, stimes] (3.6)
pbob =[sstatue, sempire, scentral, stimes], (3.7)

we get the following transition count matrix TD:

TD =


0 3 0 0
0 0 1 0
1 0 0 1
1 0 0 0

 (3.8)

As mentioned earlier, such transition count matrices play an important role with regard
to the methodology applied throughout this work: i) For comparing hypotheses about
human navigation, calculating the likelihood of a specific parameter instantiation of a
Markov chain is essential. ii) For mining subgroups with exceptional transition behavior,
we fit Markov models to various subsets (e.g., old vs. young people) of a path dataset in
order to judge their particular navigation characteristics. In the following, given a path
dataset D, we briefly cover the corresponding aspects of calculating the likelihood of a
parameter instantiation, and of fitting a Markov model to the data.
Calculating likelihood. If a Markov chainM = (S,θ) is given, as in Figure 3.3, we
can calculate the probability Pr(D|θ) of observing the paths in D, where Pr(D|θ) is also
called the likelihood of the transition probabilities θ given the data D. After deriving the
transition count matrix TD = (ni,j) from D, we calculate the likelihood Pr(D|θ) using
the following formula:

Pr(D|θ) =
∏
i,j

θ
ni,j
i,j (3.9)

For the Markov chain from Example 2 and the data from Example 3, we then calculate:

Pr(D|θ) = θ
ncentral,times
central,times · θ

ntimes,statue
times,statue · θ

nstatue,central
statue,central · θ

nstatue,empire
statue,empire · θ

nempire,central
empire,central (3.10)

= 13 · (1

2
)1 · (2

3
)1 · (1

3
)1 · 11 (3.11)

=
1

9
(3.12)

Fitting to data. If no transition probabilities are given, we can fit a Markov chain to the
observed data, i.e., by inferring a transition probability matrix θD = (θ′i,j) from the path
dataset D (instead of setting it arbitrarily as in Example 2). For this, we normalize each
row of the transition count matrix TD: θD = (ni,j/

∑
j ni,j). For the data from Example 3,

this results in slightly different transition probabilities than the arbitrarily chosen ones in
Example 2:

θD = (ni,j/
∑
j ni,j) =


0 1 0 0
0 0 1 0

1/2 0 0 1/2

1 0 0 0

 (3.13)
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If the transition probabilities θ from Example 2 match the underlying navigational process
of the observed phenomenon, the difference to the derived transition probabilities θD will
decrease.

3.2.2. Related work

In this section, we cover extensions and applications related to Markov chains.

3.2.2.1. Extensions

Depending on the naming scheme, Markov chains, as we use them in this work, can be
considered to be a special case of the more general notion of Markov processes, which is
an intensively studied model class. Markov models are stochastic models which essentially
are all using processes based on the Markov property. This means that — in some manner
— they incorporate a random sequence of states where the next state only depends on the
current state. In this section we review a set of selected instances of Markov models in
order to give a short overview of this model class. For this, we mainly focus on Markov
models where the random sequence of states is directly observable and where the process
is not influenced by external factors (i.e., autonomous).
Space and time. In general, there are two fundamental concepts associated with Markov
models that are often varied, that is, the state space and the notion of time. With regard
to the state space, there are countable (or finite) state spaces contrasted by the continuous
(or general) state spaces. With regard to time there are discrete-time and continuous-time
variants of Markov models. While we employ a discrete-time, discrete (and finite) state
space model (cf. Section 3.2.1) as introduced by Markov in 1913 [341], continuous-time
Markov processes are also often studied. For example, continuous-time, discrete-state
models, also called semi-Markov processes [422], were introduced by Kolmogorov in
1931 [14] and allow to stay at each state for a random amount of time. The Poisson
process can be considered to be an example of this model variant [164]. With regard to
continuous-time, continuous-state models, processes like the Wiener process or Brownian
motion [191] are well known.
Additional dependencies, higher orders, and mixture models. To address differ-
ent challenges of modeling (web) navigation, such as data sparsity or overfitting [454],
various variants and extensions of Markov chains were developed. All of them involve
adding additional dependencies and information in some manner. Davison [134] gives
an overview of such methods based on Markov models including: higher order Markov
models [e.g. 69], Markov trees [e.g. 434], or PPM (prediction by partial matching) [e.g.
104]. Other models like the relational Markov model [13] exploit hierarchical relations of
web pages (for personalization purposes).

Of the mentioned extensions higher order processes are an often studied field, i.e.,
where states depend on a longer history of observations [71, 114, 115, 141, 486]. For
example, Singer et al. [454] studied which order of Markov chains best models the memory
structure of human navigation on the web (also see Section 2.2.3.1). While higher order
Markov chains are more expressive, their complexity increases exponentially when the
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order of the model increases requiring large amounts of data in order to derive accurate
transition probabilities. Thus, a variety of approaches emerged which introduce more
flexibility into the Markov chain without relying on increasing the order [e.g., 292]. Such
models include (but are not limited to) the Mixture Transition Model by Raftery [413],
or the Variable Length Markov chain [70, 71, 79]. The former model uses a set of lag
variables which adjust the transition probabilities given the current state by mixing in the
transition probabilities from previous states. The latter [79] allows for variable memory
structures by introducing a proxy function which — based on the complete history of
states — chooses the number of past states to be considered for deriving the current
transition probabilities (which results some kind of auto-correlated process).

There are also models which consider several separate transition probability matrices (cf.
Figure 3.3) mixing them in some manner. In that direction, the Mixed Markov chain
model was studied by Poulsen [405] in the context of customer behavior segmentation.
Poulsen defined groups, each with its own transition probability matrix. Group mem-
bership probabilities are then assigned to each sequence of observations. Similar group
memberships are used by Rendle et al. who factorized Markov chains [419] and by Gupta
et al. [223] who reconstructed mixtures of Markov chains [223]. Others define more
complex group assignments and transition probability mixtures (e.g., Wallach [504]). In
our work [41], we also use a mixed Markov chain model, specifically to compare hypotheses
on the underlying processes of heterogeneous sequence data as introduced in Chapter 4.
We define a model where formulating hypotheses is flexible (e.g., it allows for group
assignments on a transition level instead of a sequence level as in the work by Poulsen
[405]). Also our model is by design straightforward to interpret (in contrast, e.g., to
Buhlmann and Wyner [79] or Wallach [504]). See Chapter 4 for details.

Switching processes. Markov switching processes [e.g., 177, 411] model observations
dependent on hidden Markovian dependency structures. Some classic instances in this
class are the Hidden Markov Model [411] (HMM), the Factorial HMM [199] or the Auto-
Regressive HMM [227] (also see Bengio [52] and Murphy [370] for further extensions).
There are also methods based on, or related to, these methods which are used for prediction,
labelling, clustering or segmentation [84, 171, 181, 212, 347]. This includes, e.g., Bayesian
non-parametric methods [177, 482] which adjust their complexity based on the data. Such
models are also related to our hypothesis comparison approach, MixedTrails [41], where
transitions may stem from different transition probability matrices dependent on time
(see Chapter 4 for details).

Further extensions. There are also a variety of other models explicitly or implicitly
using Markov models. For example hierarchical models are especially studied in the
context of Hidden Markov and Markov switching models [173]. Here, observations are
dependent on complex hidden structures which are modeled as a hierarchy of Markov
chains. Furthermore, there are Markov decision processes [49, 408] where state transitions
emit rewards and do not only depend on the current state but also on a chosen action
from a set of available actions per state. Usually the goal is to find a policy for choosing
actions that maximize the reward. Finally, we also want to mention Markov random
fields [278], also called Markov networks, where a set of random variables assumes values
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from a set of vertices of an undirected graph and satisfies certain Markov properties, i.e.,
the pairwise, local, and global Markov property. Markov random fields are for example
applied for (3D) image processing [142], or image segmentation [239]. However, they are
usually not applied to analyzing or understanding sequential processes as we aim to do in
this work.

3.2.2.2. Applications

Markov chains and their variants are applied in a wide range of application domains, e.g.,
for descriptive and explorative analysis, modeling of real world processes, or prediction. In
the following, we give pointers to approaches using Markov chains for geo-spatial behavior
as well as web navigation, and provide a short overview on other application domains for
which Markov chains are used.
Geo-spatial behavior and web navigation. Many human mobility models as reviewed
in Section 2.1.3 also are inherently based on Markovian structures, i.e., they study and
model transition counts between different locations [e.g., 165, 330, 345, 378, 450]. Also,
Markov chains are often used to model switching processes between a set of movement
behavior classes, e.g., employing Hidden or Mixed Markov models [18, 171, 258]. And
finally, prediction tasks are an important application of Markovian models in the geo-
spatial domain [e.g., 189, 252].

For the application of Markov chain models in the field of web navigation, we refer to the
corresponding background section (Section 2.2.3), were we explicitly discuss applications
like descriptive and explorative use cases [145, 485], behavioral clustering [81, 406], or the
analysis of memory structures involved in navigational processes on the web [111, 454].
Other application scenarios. Besides web navigation and human mobility, Markov
himself studied the transition probabilities between vowels and consonants in Alexander
Pushkin’s novel Eugene Onegin [cf., 236, 341]. Furthermore, a classical introductory
example for Markov chains is weather prediction, for which they were also used in practice
[186]. Furthermore, the Markov chain model and its extensions are used in the field
of genetics [277], software testing [525], or information theory [443], for analyzing and
modeling genetic algorithms [209, 376], in chemistry for modeling molecule growth [296],
or in finance for modeling credit risk [255], as well as for generating lyrics [36] or
melodies [386]. Finally, Markov chains also are the underlying concept of Hidden Markov
models which are, for example, widely employed in the fields of speech recognition [410]
and bio-informatics [272, 470].

One more prominent example for the application of Markov chains worth mentioning is
their integral role in the Markov Chain Monte Carlo (MCMC) framework, which is the
basic concept for many other techniques, extensions, and applications [76]. Particularly,
the MCMC framework is applied to evaluate posterior distributions in complex Bayesian
models [203]. Here, each state in a Markov chain represents the value of a sampled
variable (e.g., the parameters of a model) and the stationary distribution of the Markov
chain corresponds to the probability distribution (e.g., the posterior) for that variable. In
this context, two prominent instances of MCMC are the Metropolis-Hastings algorithm
for arbitrary models and the more specialized Gibbs sampler which — in its basic form —
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is a special case of the Metropolis-Hastings algorithm and takes advantage of conjugate
priors [76]. Also note that the output of both methods can be used to estimate marginal
likelihoods, which is useful for calculating Bayes factor [273] when analytical inference is
infeasible [109, 110].

3.3. Comparing navigational hypotheses using HypTrails

In this thesis, we aim to explain the underlying processes of human behavior in the
form of human navigation on the web as well as geo-spatial human mobility based on
different theories, existing literature, domain experts, previous experiments, or intuition
(cf. Part III). In other words, we formulate hypotheses which compete to describe the
same set of data [287]. This problem setting is called model comparison. In the context
of this thesis, the most important approach to model comparison, is based on Bayes
factors [474], which have the advantage of an automatic, built-in Occam’s razor balancing
the goodness of fit with complexity [273]. In particular, a major part of our work is based
on HypTrails (cf. Section 3.3.2) by Singer et al. which employs Bayes factors. We use it
to “compare hypotheses about human trails on the web” [453] as well as in a geo-spatial
context (cf. Part III), and we extend HypTrails to heterogeneous sequence data with our
approach MixedTrails (cf. Chapter 4).
In this section, we first introduce the notion of Bayesian model comparison (Sec-

tion 3.3.1). Section 3.3.2 then builds upon this to review the HypTrails approach, which
is one of the methodological foundations of this work. Finally, we also briefly summarize
other methods for model comparison (Section 3.3.3).

3.3.1. Model comparison using Bayes factors

Given an arbitrary set of observed data, we may have different ideas on how this data
was generated. Such ideas are often formulated as statistical processes, i.e., mathematical
models generating random samples of the data [289]. For example, when observing a
sequence of numbers, e.g., 5, 2, 3, 1, 1, 2 we can assume it was generated by rolling a
dice (Mi), thus expecting that each number is independently drawn from a categorical
distribution. Or we can model each number as a state and introduce dependencies to the
previous number (Mj) as is modeled by Markov chains (as introduced in Section 3.2).
Note that both models have parameters which need to be set: The dice may be fair or
loaded, and for the Markov chain we need to set transition probabilities.3

Now, let us consider a finite set of such modelsM = {M1,M2, . . .} which compete for
describing some dataset D. The goal of model comparison is to establish a partial order v
on this set of models [453], i.e., Mi vMj denotes that Mj describes the data similarly
well or better than Mi. To find such a partial order, the concept of Bayes factors can be
used. It follows the intuition that each model Mi has a prior probability Pr(Mi), which
represents the probability of model Mi before seeing data. Such prior probability can
stem, for example, from theory, previous experiments, or intuition. After seeing the data,

3Markov chains are equivalent to a dice when the transition probabilities are the same for each state.
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prior probabilities
Mi Mj

posterior probabilities
Mi Mj

observed data

Figure 3.4.: An illustration of Bayes factor. The Bayes factor is a measure of how much the
probability for each model shifts after seeing data. This figure shows two models (Mi, Mj) which
are equally likely before seeing the data (prior). However the probability (posterior) strongly shifts
in favor of Mi after seeing the data. If this shift is strong enough [273], then Mi is considered to
describe the data better.

this (prior) probability gets redistributed between the models resulting in a posterior
probability Pr(Mi|D), which can be calculated using Bayes rule:

Pr(Mi|D)︸ ︷︷ ︸
posterior of Mi

=

likelihood of Mi︷ ︸︸ ︷
Pr(D|Mi)

prior of Mi︷ ︸︸ ︷
Pr(Mi)

Pr(D)︸ ︷︷ ︸
marginal likelihood overM

(3.14)

This redistribution is illustrated in Figure 3.4 with two models Mi and Mj . Now, Bayes
factor is a pairwise measure of how much the probability for two models Mi, Mj shifts
after seeing the data and can be expressed using prior and posterior odds [273]:

Pr(Mi|D)

Pr(Mj |D)︸ ︷︷ ︸
posterior odds

= Bi,j ·
Pr(Mi)

Pr(Mj)︸ ︷︷ ︸
prior odds

, with Bi,j =
Pr(D|Mi)

Pr(D|Mj)︸ ︷︷ ︸
Bayes factor

(3.15)

Here, the Bayes factor is the ratio of the model likelihoods:4 Pr(D|Mi) and Pr(D|Mj).
If the shift towards one of the models, e.g., Mi, is great enough then it is said that Mi

describes the data better than Mj . Note that if we assume all models to be equally likely
a-priori Pr(Mi) = Pr(Mj) (as often done in Bayesian model comparison), then the Bayes
factor directly implies the posterior probabilities of the models, cf. the derivation of Bayes
factor in [273].
The strength of evidence and its interpretation. The likelihoods Pr(D|Mi) and
Pr(D|Mj) are also called evidence because they provide relative evidence for one or the
other model to describe the data better. To interpret if there is enough evidence to voice
a meaningful preference, Kass and Raftery [273] give a guideline based on a threshold t.
In particular, they consider the natural logarithm of Bayes factor:

loge(Bi,j) = loge

(
Pr(D|Mi)

Pr(D|Mj)

)
= loge(Pr(D|Mi))− loge(Pr(D|Mj)) (3.16)

4With regard to notation: The likelihood L of a model Mi given the data D is defined as the probability
of the data given the model: L(Mi|D) := Pr(D|Mi). In this work, we use the probability notation.
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and say, that there is “very strong” evidence for Mi to be a better description of the data
if loge(Bi,j) > t and that there is “very strong” evidence for Mj to be a better description
if loge(Bi,j) < −t. For this, Kass and Raftery generally use a threshold of t = 5. This is
more conservative than previously suggested thresholds [256]. Even so, Kass and Raftery
suggest higher thresholds for specific use cases (e.g., for forensic evidence it should be set
higher than in other cases). Thus, in this work, we opt for a more conservative threshold of
t = 10 to consider one model to be superior to another. Finally, we want to emphasize that
using Bayes factor inherently incorporates Occam’s razor [273, 336], that is, it prevents
overfitting by preferring simple models over complex ones where the complexity is not
needed to explain the data. This is an important property when designing hypotheses
about human navigation behavior especially in the context of heterogeneity where, for
example, hypotheses can get overly complicated when introducing a large set of groups
with different navigational characteristics (cf. Chapter 4).
Priors and hypotheses. As shown above, to use Bayes factors we need to calculate
the likelihood Pr(D|Mi) of each model Mi given the data D. In this context, each model
Mi has its own set of parameters where each parameter configuration has a specific
probability. The corresponding probability distribution Pr(µi|Mi) is called the prior over
the different parameter settings µi of model Mi. Then, Pr(D|Mi) is calculated as the
marginal likelihood over the parameter space of Mi:

Pr(D|Mi) =

∫
µi

Pr(D|µi,Mi)︸ ︷︷ ︸
likelihood of µi

Pr(µi|Mi)︸ ︷︷ ︸
prior of µi

dµi (3.17)

In other words the likelihood of a model is defined by marginalizing over all its possible
parameter configurations weighted by their prior probability Pr(µi|Mi); hence the name
“marginal probability”. While the model structure defines the likelihood Pr(D|µi,Mi) of
the parameters, choosing the prior is not an easy task [194, 273] since Bayes factor can
be very sensitive to this choice and employing an uninformed prior (i.e., all parameter
configurations are equally likely) is not always the best choice [273]. While this can be
inconvenient, it can also be considered an advantage. In particular, Kruschke [287], Rouder
et al. [423], and Vanpaemel [496] advocate to leverage this property to compare hypotheses.
That is, they propose to encode theory-induced hypotheses into priors. Accordingly, there
are many studies which discuss how to elicit informative priors appropriately [194, 382,
495, 497]. In this work, we use and extend HypTrails (cf. Section 3.3.2), which is based
on exactly this notion to compare hypotheses about human navigational behavior.
Approximation. An important issue that arises when using Bayes factors is the fact
that estimating the likelihood Pr(D|Mi) of a model can be analytically challenging or
computationally intractable [273]. While there is an analytical solution in the case of
HypTrails (cf. Section 3.3.2), which we use throughout this work, there exist a variety
of other models where such a solution is not available. One example is our extension of
HypTrails called MixedTrails (cf. Chapter 4) where we had to derive a sampling scheme.
For the general case, there is a variety of other methods for calculating the marginal
likelihood based on sampling and approximation including Markov Chain Monte Carlo
methods or a Laplace approximation. For a more detailed overview on these methods we
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Figure 3.5.: Hypotheses about strategies in a soccer game. In this figure, we show an
illustrating soccer example to which HypTrails can be readily applied: We are interested in a
team’s strategy in a specific game. We have recorded and counted the passes between players
as well as shots on the goal and represent them as transition counts between the states of a
Markov chain (a). Based on this data HypTrails allows researchers to compare hypotheses about
sequential data that express beliefs in transition probabilities (b-d, strength of belief indicated by
line width). Utilizing Bayesian inference, it then determines the evidence of the data (a) under
these hypotheses (b-d) and ranks the hypotheses based on their plausibility; in this case, even if it
is not a perfect match, the defense hypothesis (d) can be considered the relatively most plausible
one (cf. Section 3.3.2.1).

refer to Kass and Raftery [273] and more recent overviews by Friel and Wyse [179] and
Han and Carlin [228].

3.3.2. The HypTrails approach

Hypotheses about human navigation, as we study in this theses, are usually abstract
concepts and can stem from a variety of sources including existing theories, domain
experts, previous experiments, or intuition. HypTrails provides an approach to formulate
and compare such hypotheses with regard to the relative plausibility for each hypothesis
to have generated the data. Figure 3.5 shows an illustrating example in which we
depict competing hypotheses about the strategy of a soccer team during a specific game.
Figure 3.5a shows the number of passes between players and shots recorded during a game,
i.e., the data. Figure 3.5 (b-d) list various hypotheses including a uniform hypothesis,
where players pass around randomly, an offensive hypothesis, and a defensive hypothesis.
In the course of this section, we will see that the defensive hypothesis explains the
strategy of the team well but does not quite cover all aspects of the players’ behavior
(cf. Figure 3.6). To achieve this, HypTrails employs Bayes factors as described in the
previous section (Section 3.3.1). In particular, HypTrails is a special case of Bayesian
model comparison, where the model Mi is fixed to a Markov chain and hypotheses are
encoded into the prior probability distributions over the model parameters µi.

52



3.3. Comparing navigational hypotheses using HypTrails

In the following, we first explain how hypotheses are formulated in the HypTrails
framework and how they are compared on a practical level. In this context, we specifically
focus on the notion of different belief levels (i.e., how much error a hypothesis is allowed
with regard to the observed data). This enables a more detailed and robust comparison of
hypotheses than when using a single parameter instantiation. Then, we summarize how
the previously introduced Bayes factors are utilized to allow for comparing hypotheses
based on marginal likelihoods and argue that hypotheses can be encoded as priors over
Markov chain parameters within this framework. And finally, we elaborate on the process
of eliciting hypotheses as such priors based on different levels of belief.

3.3.2.1. Formulating and comparing hypotheses

For comparing a set of hypotheses H = {H1, H2, . . .} about the underlying processes
of sequential data, HypTrails [453] builds on (first-order) Markov chain models (cf.
Section 3.2). That is, it formulates each hypothesisH as a matrix of transition probabilities
φ = (φi,j) between a fixed set of states S = {s1, . . . , sm}. Some examples for the
hypotheses in Figure 3.5 are given in Figure 3.6a. For example, the uniform hypotheses
Huniform assumes that the soccer players are passing the ball randomly. Thus, we set the
transition probability of the ball between all players to 1/m−1 where m is the number of
states in S. We exclude self-transitions, since players usually do not pass to themselves,
hence m−1 instead of m. In contrast the offense Hoffense hypothesis assumes that strikers
will always shoot at the goal (φ3,5 = φ4,5 = 1), and defense players will always pass
towards strikers with a preference to flank (φ1,3 = φ2,4 = 3/4, φ1,4 = φ2,3 = 1/4). Note
that in Figure 3.6a, we have left out the transition probabilities from the goal to the
players since we are only interested how the players from the analyzed team behave and
not the goal keeper of the opposing team.
Given a sequence dataset D in the form of a transition count matrix T (derived from

Figure 3.5a, cf. Definition 3), HypTrails then establishes the relative plausibility for
each hypothesis to have generated the data with regard to different strengths of belief κ
(also called concentration factor). As a measure for plausibility HypTrails calculates the
marginal likelihood P (D|H) (also called evidence) of each hypothesis H by encoding the
hypothesized transition probabilities (cf. Figure 3.5) as priors of a Markov chain with
regard to the given concentration factor. The results shown as evidence plots as depicted
in Figure 3.6b. For technical details on encoding hypotheses as priors as well as eliciting
priors as hypotheses please refer to the subsequent Sections 3.3.2.2 and 3.3.2.3.
Interpretation of evidence. The marginal likelihoods (or evidences) in Figure 3.6 are
reported on a log-scale. Using this scale and considering a single concentration factor κ,
a hypothesis (Hi) is considered to be more plausible than another (Hj) if its marginal
likelihood P (D|Hi) is sufficiently larger than the marginal likelihood P (D|Hj) of Hj ,
where the sufficiency is determined by a threshold t. As already mentioned in Section 3.3.1,
in this work, we opt for a threshold of t = 10 as inspired by Kass and Raftery [273]. Also,
note that HypTrails only compares hypotheses on a relative scale. That is, it establishes
a relative order based on which hypothesis can be ranked. However their absolute ability
to model the data can not be judged.
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Figure 3.6.: Several formulated hypotheses and an evidence plot created by Hyp-
Trails. (a) shows the transition probability matrices derived from the hypotheses visualized in
Figure 3.5. Note that we have left out the transition probabilities from the goal to the players
since we are only interested in how the players from our team behave and not the goal keeper of
the opposing team. Also, we have added another hypothesis φdefense (with shots) allowing for some
shots at the goal while still playing defensively. (b) shows the results of HypTrails for increasing
concentration factors. As it turns out our new hypothesis works best. The defense hypothesis on
the other hand covers some important behavioral factors but neglects the occasional shot at the
goal. This is why it first achieves high marginal likelihood values which then strongly decrease.
This illustrates how HypTrails can provide a more detailed analysis of behavioral processes than
scalar comparisons can (e.g., based on AIC or BIC, cf. Section 3.3.3).

Concentration factors. The concentration factor κ is a measure to weight simplicity
against accuracy. Its technical formulation follows in Section 3.3.2.3. On an intuitive
level, simplistic hypotheses (concentrating their probability mass on a limited set of highly
frequented destinations) are favored by small concentration factors, and hypotheses fitting
the overall data extremely well (possibly spreading out their probability mass to many
different destinations) are favored by large concentration factors. For example, if we
favor a simple hypothesis, i.e., we very strongly believe (high concentration factor κ)
that the transition from state si ∈ S to state sj ∈ S is the only option for transitions
starting at state si (φi,j = 1), but we observe transitions from si to other states as
well, then the plausibility of the corresponding hypothesis will be very low, even if the
hypothesis is mostly correct. If however, we set the concentration factor to a less extreme
level, thus allowing for some inaccuracies, such a “simple” hypothesis that does not quite
match the data can still achieve respectable plausibility values. More concretely, in
Figure 3.6b, Hdefense covers a very strong component of the observed data while being
relatively simple, i.e., it believes that the players exclusively play defensively by passing
the ball from side to side or backwards. Huniform on the other hand assumes that all
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passes and shots are equally likely. It spreads out its probability mass and looses a lot
of accuracy. However, it allows for transitions that the defensive hypothesis rules out.
Thus, for larger concentration factors it benefits from its vagueness and does not suffer
strongly decreasing marginal likelihoods as the defense hypothesis does. Nevertheless,
the fact that it does not reach the high marginal likelihood (compared to the defense
hypothesis), allows to conclude that it does not cover important processes present in the
observed data. The new hypotheses Hdefense (with shots) somewhat alleviates this issue by
extending the defense hypothesis by including shots at the goal. This allows for a more
stable marginal likelihood.
Thus, overall, using a range of different concentrations factors κ (different levels of

belief), can help to compare a set of hypotheses in more detail than fixing a single belief
for each hypothesis. For further examples, also see our studies in Part III where we
extensively use HypTrails.

3.3.2.2. From model comparison to hypothesis comparison

To allow comparing hypotheses about sequential data via marginal likelihoods as outlined
in the previous section, HypTrails operationalizes Bayesian model comparison (cf., Sec-
tion 3.3.1), i.e., it uses the notion of Bayes factor. However, instead of comparing different
models, HypTrails encodes hypotheses into the prior distribution over the parameters of a
single class of models. As mentioned in Section 3.3.1, this approach has been advocated by
a variety of researchers [287, 423, 496]. In this context, HypTrails uses (first-order) Markov
chains MMC (see Section 3.2) as its underlying model and encodes hypotheses into the
prior distribution Pr(θ|H,MMC) over the corresponding transition probabilities θ = (θi,j).
It then calculates the marginal likelihood (also called evidence) of a hypothesis H given
the data D (cf., Equation (3.17) where the hypothesis is included in the model):

Pr(D|H,MMC)︸ ︷︷ ︸
marginal likelihood of H

=

∫
Pr(D|θ,MMC)︸ ︷︷ ︸

likelihood of θ

Pr(θ|H,MMC)︸ ︷︷ ︸
prior of θ

dθ (3.18)

Since HypTrails only uses MMC as the underlying model, we can simplify the notation to:

Pr(D|H)︸ ︷︷ ︸
marginal likelihood of H

=

∫
Pr(D|θ)︸ ︷︷ ︸

likelihood of θ

Pr(θ|H)︸ ︷︷ ︸
prior of θ

dθ (3.19)

Now, having calculated the marginal likelihood of two hypotheses Hi and Hj they are
compared using Bayes factor:

Bi,j =
Pr(D|Hi)

Pr(D|Hj)
(3.20)

As mentioned before (Sections 3.3.1 and 3.3.2.1), if the logarithm of Bayes factor exceeds a
certain threshold (t = 10) one or the other hypothesis is considered to be more plausible in
the context of the given data D. Also, note that if we assume all hypotheses to be equally
likely a-priori Pr(Hi) = Pr(Hj), as often done in Bayesian model comparison, then the
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Bayes factor directly implies the posterior probabilities of the models, cf. Section 3.3.1. In
the following we clarify how a hypothesis H in combination with a concentration factor κ
can be encoded into the prior distribution Pr(θ|H) in order to compare hypotheses as
showcased in Section 3.3.2.1.

3.3.2.3. Eliciting priors from hypotheses

In Section 3.3.2.2, we have reviewed that model comparison can be employed for com-
paring hypotheses about sequential data, i.e, by encoding hypotheses as priors over the
parameters of a Markov chain. In this section, we first show how Dirichlet priors can
be operationalized to define the corresponding prior probability distributions. Then,
we clarify how hypotheses (represented as transition probability matrices φ = (φi,j),
cf. Figure 3.6a) in combination with a concentration factor κ are converted into the
parameters of a Dirichlet prior. This process is called elicitation.
Marginal likelihood and Dirichlet priors. HypTrails uses Dirichlet priors to encode
a hypothesis as probability distributions over the parameters of a Markov chain. In
particular, for each state si an individual Dirichlet prior Dir(αsi) is used. Each “state
prior” Dir(αsi) defines a probability distribution over the transition probabilities θsi
from each state si to all other states: θsi ∼ Dir(αsi). The parameters αsi are vectors
of positive numbers, i.e., αsi = (αi,1, . . . αi,n) where αi,j ∈ R+. A Dirichlet distribution
Dir(αsi) with αi,j = κ · φi,j + 1, can be pictured by assuming φsi = (φi,1, . . . φi,n) as
the core transition probability distribution from state si to all other states, and κ as
the concentration around φi for transition probabilities θsi sampled from Dir(αsi). See
Figure 3.7 for an illustration.5

Given a sequence dataset D in the form of a transition count matrix T = (ni,j), the
formula to calculate the marginal likelihood Pr(D|H) of a hypotheses H represented by a
Dirichlet parameter matrix α = (αi,j) is:6

P (D|H) =
∏
si∈S

Γ(
∑

sj∈S αi,j)∏
sj∈S Γ(αi,j)

∏
sj∈S Γ(ni,j + αi,j)

Γ(
∑

sj∈S ni,j + αi,j)
(3.21)

Elicitation. The next step is to elicit a parameter matrix α = (αi,j) from a hypothesis H
represented by a transition probability matrix φ = (φi,j) and given a specific concentration
factor κ (or strength of belief). In other words, we aim to encode the information about
transition behavior (φ) together with a certainty or accuracy (κ) into the Dirichlet priors
used by HypTrails. In this work, we use a slightly modified version of the approach
proposed by the original HypTrails paper [453]. In particular, analogously to the example
in Figure 3.7, we use a stochastic hypotheses matrix φ = (φi,j), and, given a specific
concentration factor κ, we calculate the entries of parameter matrix α = (αi,j) as follows:

αi,j = κ · φi,j + 1 (3.22)
5Many thanks to Thomas Boggs for providing the code for the visualization in Figure 3.7:
https://gist.github.com/tboggs/8778945, accessed: December 2017

6See Singer et al. [454] for a derivation. Note however, that we do not explicitly incorporate the
probability of the start state since it can be modeled as a dedicated regular state.
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Figure 3.7.: Dirichlet distributions with various parameter settings. This figure
shows the distribution of transition probabilities θsi from state si of a Markov chain with
three states according to various Dirichlet distributions: θsi ∼ Dir(αsi). For the parameters
αsi = (κ · φsi + 1), we use two core probability distributions, φ′

si = (1/3, 1/3, 1/3) and φ′′
si =

(1/2, 1/2, 0), with varying concentration factors κ ∈ {1, 6, 24}. Generally, the transition probability
distributions θsi are sampled around the respective core transition probability distribution. For
increasing concentration factors κ the transition probability distributions θsi sampled form the
corresponding Dirichlet prior will be more concentrated.

The +1 adds the proto-prior that is necessary to ensure proper priors. Also, if κ = 0,
every transition probability configuration is equally likely (referred to as a flat prior,
cf. Singer et al. [453]). Note that in some experiments it can make sense to scale the
concentration factor κ for better interpretation. That is, we multiply the concentration
factor by the number of states n, resulting in the following formula for the entries of the
parameter matrix: αi,j = κ · n · φi,j + 1. We use this scaling in most of our experiments
(cf. Part III). For each case study we explicitly point out if this is the case.
Alternative elicitation processes. The original HypTrails paper [453] proposes to
use a slightly different approach based on the trial roulette method [133, 217, 382]. It
distributes a fixed number of integer-valued chips across all entries in the parameter
matrix α = (αi,j). The overall number of chips is calculated as m2 + k ·m2 where k —
similar to κ — represents the strength of belief. The chips were distributed as integer
values where each entry of α receives at least one chip (αi,j ≥ 1). The remaining chips
are distributed according to a (non-stochastic) hypothesis matrix with entries ranging
from 0 to 1. For details please see the original paper [453].

However, using non-stochastic hypothesis matrices results in a different number of chips
per state, that is

∑
j αi,j is not necessarily equal to

∑
j αi′,j for two states si, si′ ∈ S. This

can lead to weighting the importance of states differently and thus making the results
difficult to interpret. Also, the global distribution of integer-valued chips makes the
elicitation process harder to distribute across several computation nodes (cf. Section 6.1).
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Nevertheless, the original elicitation process may be considered to be more natural in a
sense that integer-valued chips are used together with the notion of trial roulette. Also, it
is more flexible in its ability to weight source states. With regard to our methodological
contribution in Chapter 4, both processes can be used without restrictions. For our
experiments in Part III, we found our own variant to be more practical due to the
mentioned consistency across states as well as computational efficiency.
Concentration factors to avoid over-specification. In the general framework of
Bayesian model comparison, choosing priors for the corresponding model parameters
is not an easy task since usually a variety of information has to be taken into account
including relevant data, literature, and in particular the corresponding certainty, i.e., the
strength of belief. HypTrails somewhat alleviates this issue by formalizing the suggestion
by Kass and Raftery [273] to compare several prior instantiations by using a range
of concentration factors κ = {κ1, κ2, ...}. This allows for a structured and detailed
comparison of hypotheses as described in Section 3.3.2.1.

3.3.3. Related work

Besides using Bayes factor there are several other methods for model comparison. In the
context of establishing the order of Markov chains used for modeling human navigation on
the web, Singer et al. [454] summarized several methods for model comparison. We follow
their example and, beyond covering Bayes factor (Section 3.3.1), outline Frequentist and
information theoretic approaches. For another overview on methods for model comparison
also see for example Piironen and Vehtari [399] and Vanpaemel [496].
Frequentist approach. There are two major schools in statistics, that is the Frequentist
approach and the Bayesian approach. We already covered a Bayesian approach for model
comparison by introducing Bayes factor in Section 3.3.1. In the Frequentist context, one
way to establish if a model describes the data better/best is when all other models are
rejected with regard to their goodness of fit, i.e., by using p-values [120]. In particular,
after fitting a specific model to the data, a proxy measure is used to calculate the difference
of the data to the model. This difference is compared to the difference of simulated data
from the fitted model. If the difference of the simulated data to their respective fits is
generally smaller (small p-value), the model is rejected. For a more detailed discussion see
Clauset et al. [120] who describe this methodology in the context of proving a power-law
fit using the Kolomogorov-Smirnov statistic [441] as a difference measure. Of course, this
method can only establish a single model to describe the data best, i.e., if all other models
can be rejected. Among the models which were not rejected, none can be considered
better than the other.7

In cases where rejecting all models but one is not possible, i.e., where we have to choose
from a set of non-rejected models, approaches like the likelihood ratio test [90, 372] can be
used (as exemplified by Clauset et al. [120]).8 For the likelihood ratio test, the parameters
7Even so, Clauset et al. suggest that, generally, a model with a very large p-value can be considered to
describe the data better than models with a very small p-value.

8In addition to the previously introduced Bayes factor, Clauset et al. [120] also mention alternatives like
cross-validation [472] and minimum description length [220].
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of each model Mi are optimized using the maximum likelihood estimate [303, 424], i.e.,
the parameters are adjusted in order to maximize the likelihood Pr(D|Mi) of the model
given the data. Then, to compare two models Mi, Mj the logarithm of their likelihood
ratio log(Pr(D|Mi)) − log(Pr(D|Mj)) is examined. Depending on the sign, one or the
other is considered to describe the data better. To ensure statistical significance, p-values
are used to check if the established order has to be rejected. However, in the general
case it is not an easy task to formulate the distribution of the likelihood ratio required to
calculate these p-values [317]. Thus, while unified approaches exist [317], usually9 the
likelihood ratio test is only used for nested models because then the likelihood ratio is χ2

distributed [528] and, thus, the p-value can be easily computed. Note that this way, it is
only possible to reject a simpler (nested) model [120].

Generally, the Frequentist methods mentioned so far can only be used to reject certain
models. Thus, they can not establish (or directly confirm10) a partial order on a set
of hypotheses as is desirable in the model comparison setting. Also note that for more
general tests in the Frequentist settings, the use of p-values has to be treated with care
and has often been criticized [89, 121, 196, 215, 367, 380].
Information theory. Among others [e.g., 119, 231, 464, 511], there are two prominent
information theoretic measures for model comparison, namely the AIC (Aikaike Informa-
tion Criterion) and the BIC (Bayesian Information Criterion). While AIC [9, 10] can also
be interpreted in a predictive setting, it is originally based on approximating the loss of
information with regard to the Kullback-Leibler divergence [291] when using a particular
model to describe the data. BIC — sometimes called the Schwarz criterion because it has
been proposed by Schwarz et al. [439] — approximates the Bayes factor [273, 290, 412]
assuming a “unit information prior” and can be calculated independently of a specific
prior on the model parameters. This can be useful in cases were calculating the Bayes
factor is analytically intractable or specifying an informed prior is not possible.

Just like the Bayes factor (introduced in Section 3.3.1), and in contrast to the already
covered Frequentist measures, AIC and BIC both allow to establish a partial order on
models (possibly non-nested) competing to describe some collected data. Similarly, they
also do not provide a quality in an absolute sense but only establish a relative order on
the tested models. Technically, both measures derive a scalar measure which weighs the
power to model underlying data (i.e., the maximum likelihood of a model after optimizing
its parameters), against the complexity of the model (i.e., the number of parameters
to be optimized). The difference of AIC and BIC lies in the underlying theoretical
approaches resulting in differing methods to account for the inherent complexity of a
model. The question of which method to use is often debated, as AIC and BIC both
have their advantages and disadvantages [80, 130, 290, 352, 513]. For example, Weakliem
[513] argued that since the Bayes factor is sensitive to the choice of the prior, the “unit
information prior”, as assumed by BIC, is a too restrictive choice especially because it
may be even weaker than those chosen by practitioners [274, 290]. On the other hand,
9Lewis et al. [317] also refer to Cox [126], Shapiro and Wilk [444], Vuong [498], and Williams [529] for
approaches to apply likelihood ratio tests to non-nested models.

10In the case of likelihood ratio tests a suggested preference for one or the other model can be rejected
but not confirmed.
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AIC — in its original form — is considered to be not consistent in the sense that even
with an increasing sample size a probability remains to select the larger (more complex)
model even though a smaller model is true [290].

In this work, we heavily rely on HypTrails, which uses Bayes factors for model compari-
son. Thus, we generally do not need to employ the BIC measure which is an approximation
of Bayes factor. Also, on top of allowing to establish a relative order on the investigated
hypotheses, HypTrails utilizes the sensitivity of Bayes factor with regard to priors in order
to incorporate different levels of belief in the respective hypotheses. This enables a more
detailed investigation of hypotheses than when employing measures like AIC or BIC.

3.4. Exceptional model mining

For hypothesis comparison (Section 3.3.2), we already have to have certain theories,
hypotheses, or intuitions about the real world which we want to compare based on
observed data. However, we can also take the opposite approach using methods from
the field of pattern mining where the data is given and we aim at finding patterns which
describe sub-processes of the data in order to ultimately build new theories and hypotheses
about the real world.
In this section, we briefly introduce subgroup discovery and its generalized version

exceptional model mining. Afterwards we give a short overview on related work and
applications in the context of navigation behavior mining, covering, e.g., the closely
related field of sequential pattern mining.

3.4.1. From subgroup discovery to exceptional model mining

In literature, pattern discovery an integral part of the KDD (knowledge discovery in
databases) process which is described as “the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data” [168, chap. 1].
Specifically, the application of data-mining methods for pattern discovery and extraction
is the core of the KDD process [169]. Furthermore, “a particularly important subclass
of knowledge discovery tasks is the discovery of interesting subgroups in populations,
where interestingness is defined as distributional unusualness with respect to a certain
property of interest.” [532]. For a general definition of subgroup discovery, see Novak
et al. : “Given a dataset of individuals and a property of those individuals that we are
interested in, find dataset subgroups that are statistically ’most interesting’, for example,
are as large as possible and have the most unusual (distributional) characteristics with
respect to the property of interest.” [379]. In the traditional subgroup discovery task the
interestingness referred to in this statement is usually given by a Boolean expression over
a single attribute (e.g., “class = good”) and a subgroup is considered as interesting if
the expressions holds more (or less) often than expected [312]. In contrast, exceptional
model mining (EMM) [149, 307] is a framework that “allows for more complicated target
concepts” [149]. That is, a subgroup is considered interesting if the model fitted to the
covered data is somehow exceptional (e.g., model parameters are significantly different in
the subgroup than in the overall population). This allows to apply EMM to a variety
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of settings, including target concepts describing navigational processes. In particular,
in Chapter 5, we introduce an approach to employ EMM for finding subgroups with
exceptional transition behavior.

The exceptional model mining task. Closely following the definition by Lemmerich et
al. [312], an exceptional model mining task can formally be introduced as a tuple (D,Π, C).
Where D is a dataset which is represented by a set of instances i ∈ I, Π is the search
space of subgroups, i.e., the set of candidates to choose interesting subgroups from, and
C is a set of constraints defining the “interestingness” of a subgroup. The goal is to find a
set of subgroups R ∈ Π which satisfy the given constraints C, i.e., which are interesting.

Subgroups. A subgroup is given by a subgroup description, which is a Boolean function
p : D → {true, false}, and a subgroup cover c(p), which is the set of instances covered
by p, i.e., c(p) = {i ∈ I | p(i) = true}. The search space Π of candidate subgroups is
usually defined by a subgroup description language. Assuming that each data instance
i ∈ I is associated with a set of attributes A, the description language we focus on in
this work is the canonical choice of conjunctions of selection expressions over individual
describing attributes AD ⊆ A. For nominal attributes these selection expressions are
attribute-value pairs and for numeric attributes they can be represented as intervals.
Hence, an example for a subgroup description p could be: gender = male ∧ age < 18.
Due to combinatorial explosion, a large number of subgroups can be formed even from
comparatively few selection conditions. Consequently, a large amount of algorithms has
emerged to solve the task of subgroup discovery and exceptional model mining [308, 310].

Interestingness. With regard to the interestingness of a subgroup, the constraints C
usually formulate an interestingness measure q : Π→ R and either require the resulting
subgroups to pass a threshold or constrain the result set R ⊂ Π to contain the top
k subgroups with regard to q. The interestingness measure q is often based on a set
of model attributes AM ⊆ A (also called target attributes) associated with each data
instance i ∈ I. For traditional subgroup discovery, in most cases, the target concept
is a Boolean expression over a single attribute (e.g., class = good) and a subgroup is
considered interesting if the expression holds more (or less) often than expected [see
e.g., 283]. In exceptional model mining on the other hand, interestingness is based on
more complex target concepts: Given a model class (such as correlation, a classification
model, or regression), interestingness can be expressed with regard to the fit of the
model parameters on the data instances defined by the corresponding subgroup cover. For
example, a subgroup could be considered interesting if the model parameters of the model
on the subgroup deviate significantly from the model parameters of the model fitted to
all data instances. Lemmerich et al. [312] consider the example of correlation (model
class) between two model attributes, i.e., the exam preparation time of each student and
their final score for the taken course. A finding of exceptional model mining could be:
“While overall there is a positive correlation between the exam preparation time and the
score (ρ = 0.3), the subgroup of males that are younger than 18 years show a negative
correlation (ρ = −0.1)”. Exceptional model mining has been implemented for a variety of
model classes including classification [307], regression [150], Bayesian networks [152], and
rank correlation [147].
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Summary. Given its explicit utilization of a description language to define subgroups,
subgroup discovery and exceptional model mining are descriptive methods [308]. That is,
they allow for finding interesting subgroups of data instances which are interpretable by
construction. Thus, by exploring and interpreting the resulting subgroups, exceptional
model mining allows to study and understand the observed data by inspecting its underly-
ing components. This may enable the practitioner to conceive new theories for explaining
the corresponding observations. In Chapter 5, we utilize this approach and formulate
an exceptional model mining class which employs the same Markov chain scenario as
HypTrails (cf. Section 3.3.2) in order to find interesting subgroups with regard to their
aggregate transition behavior.

3.4.2. Related work and applications

In the following, we cover work related to subgroup discovery and exceptional model
mining. In this context, we first give a brief overview of traditional application scenarios
and list several corresponding algorithms. Then, as this thesis focuses on paths and
traces resulting from human navigation behavior, we list some related work in the area of
trajectory and sequential pattern mining.

3.4.2.1. Algorithms and applications

Probably the most intensively studied variant of subgroup discovery and exceptional
model mining is frequent itemset mining introduced in the context of association rule
mining by Agrawal et al. [6]. In this context, Han et al. [229] give a broad overview on
frequent itemset mining, corresponding algorithms, extensions and applications. Some
prominent algorithms for efficiently discovering frequent itemsets are the Apriori algo-
rithm [7], Eclat [552], and the FP-growth algorithm [230]. These algorithms were applied
and extended many times. For example, the FP-growth algorithm was extended to
subgroup mining with categorical as well as numeric attributes [23, 26, 219], as well
as the more general task of exceptional model mining [310]. For more information on
different algorithms for subgroup discovery and exceptional model mining, we refer to
Duivesteijn et al. [149], Herrera et al. [241], and Lemmerich [308]. With regard to general
applications, Herrera et al. [241] list a vast set of scenarios ranging from the medical
domain, over bio-informatics, marketing, e-learning, and social data, to the field of spatial
subgroup discovery. With regard to geo-spatial data, which is highly relevant for our
work, researchers explored, for example, subgroups described by tags based on geo-tagged
images from the social photo-sharing platform Flickr [22, 309].
The applications mentioned so far can be mainly attributed to the field of subgroup

discovery. More complex approaches, which can be considered to be part of the exceptional
model mining area, include for example Atzmueller et al. [21] and Atzmueller and Mitzlaff
[25] who proposed and applied an extension of SD-Map to mining interesting community
structures in social networks [21, 25]. Further applications of the exceptional model
mining framework are listed by Duivesteijn et al. [149] including for example the analysis
of emotion on music data, or a study on exceptional subgroups with regard to the fauna
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of Europe [cf., 152]. Our own work, presented in Chapter 5, also falls into the category of
exceptional model mining and extends previous work by introducing a model class which
allows to discover subgroups with exceptional movement or navigation characteristics.

3.4.2.2. Sequences and trajectories

While subgroup discovery and exceptional model mining are concerned with subgroups of
instance based data, there is a related branch of pattern mining which focuses on sequence
and trajectory data. This branch can be divided into three categories: sequence mining,
web access pattern mining, and trajectory mining.
Sequential pattern mining. Sequential pattern mining was introduced by Agrawal
and Srikant [8] and is defined as follows: “Given a database of customer transactions
[each representing a set of items], the problem of mining sequential patterns is to find
the maximal sequences among all sequences that have a certain user-specified minimum
support. Each such maximal sequence represents a sequential pattern.”. In Srikant and
Agrawal [465], the authors further generalized this notion to incorporate time constraints,
a sliding time window, and a user-defined taxonomy and developed a corresponding
sequential pattern mining algorithm [391]. As for subgroup discovery, sequential pattern
mining was applied to many different domains and often extended. See Fournier-Viger
et al. [175] and Mooney and Roddick [366] for recent overviews. Both list some prominent
algorithms11, such as Apriori based variants [8], GSP [466], SPADE [551], SPAM [28], or
PrefixSpan [390], and name applications from a variety of fields such as bio-informatics
[248, 508], e-learning [176, 568], text analysis [403], or even energy reduction in smart
homes [440].
Web access pattern mining. Sequential pattern mining approaches are also often
applied to web logs, i.e., traces of users left when browsing the web. For example Mooney
and Roddick and Fournier-Viger et al. mention [138, 391, 431, 467] which propose or list
different algorithms in this context. The main difference to general sequential pattern
mining is that each element in a sequence represents a web page visited by a user instead
of an itemset. This scenario was named web access pattern mining by Pei et al. [391]
and falls into the category of web usage mining12, a term which El-Sayed et al. [431]
traced back to an article by Cooley et al. [123] from 1997. There exists a wide variety
of algorithms for web access pattern mining including a large array of WAP-tree based
algorithms [333, 391, 414, 478], as well as some approaches also used for general sequential
pattern mining such as GSP or PrefixSpan [167]. There is also a wide variety of related
approaches (e.g., as summarized by Facca and Lanzi [167] and Gery and Haddad [198])
consisting of work from the area of association rule mining [178], frequent sequence mining
(also called traversal pattern mining, [cf. 100, 101, 362]), or generalized frequent sequence
pattern mining [195, 339]. Application of web access pattern mining are personalization
of web content, pre-fetching and caching, usability, and e-commerce [167]. Also see Facca
and Lanzi [167] for a general overview on web usage mining.
11A wide variety of algorithms related to sequential pattern mining is implemented by the SPMF

library [174]. Also see: http://www.philippe-fournier-viger.com/spmf
12Sometimes web usage mining is also referred to as web log mining.
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Trajectory (pattern) mining. Besides web access pattern mining, sequential pattern
mining can also be applied to the geo-spatial domain. This scenario is referred to as
trajectory pattern mining [202]. The main difference to sequential and web access pattern
mining is that elements in a sequence are not represented as discrete items and events.
Instead these elements are defined in a continuous spatio-temporal context. Several
techniques were proposed to cope with this challenge. For example, Giannotti et al. [202]
and Kang and Yong [271] employed a two-step approach which discretizes the continuous
location space before applying sequential pattern mining approaches [e.g., 200]. However,
Giannotti et al. [202] also proposed a variant which dynamically computes regions of
interest during the mining process. In these approaches the temporal component also
plays an important role. For example the “T-patterns” in Giannotti et al. [202] are “a set of
individual trajectories that share the property of visiting the same sequence of places with
similar travel times.” Further work puts their focus on more fine-grained patterns [555],
semantic trajectory patterns [547], or apply trajectory pattern discovery for mining travel
or life patterns [546, 560], predicting next places [364], or travel recommendation [564, 566].
Also, with regard to trajectory mining in general, Feng and Zhu [170] and Mazimpaka
and Timpf [349] give a broader overview and divide the field of trajectory pattern mining
into: sequential/frequent pattern mining as covered so far, where several objects are
moving independently of each other, periodic/repetitive pattern mining, where only a
single object is moving and the goal is to find recurring sequences, and gathering/group
pattern mining, where several objects move in unison. Tanuja and Govindarajulu [479]
and Zheng [561] also give further information on the more general topic of trajectory
mining.
Summary. Overall, all three variants of pattern mining on sequence data and trajectories
are concerned with finding interesting sequences or trajectories. In contrast, our work
is based on analyzing and finding user groups with interesting transition behavior (see
Chapters 4 and 5). Thus, while sequence mining, web access pattern mining, and trajectory
mining, can certainly help to formulate hypotheses about the underlying processes of
human movement behavior, e.g., by uncovering a set of frequent trajectories or interesting
sequences, they do not directly explain human movement on an aggregate level.
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4. MixedTrails: Bayesian hypothesis
comparison on heterogeneous
sequential data

In this thesis, we aim to understand human navigation behavior in a geo-spatial context
as well as on the web. For this, the previously proposed HypTrails approach [453] (see
Section 3.3.2) provides a powerful tool which enables researchers and practitioners to
formulate and compare hypotheses about the underlying processes of navigation behavior.
However, HypTrails only allows to formulate homogeneous hypotheses while human
navigation behavior is inherently heterogeneous, as we have discussed in previous sections
(cf. Sections 2.1.5 and 2.2.5). That is, there may exist subsets of the observed phenomena
that exhibit strongly differing navigational characteristics (like tourists and locals who
have different preferences when navigating urban areas, cf. Section 7.4.3). To address
this issue, in this chapter, we propose MixedTrails, an extension of HypTrails, that allows
to formulate and compare intricate heterogeneous hypotheses (cf. Section 1.2.1). The
following content is based on our article on MixedTrails [41].

4.1. Introduction

Building upon Markov chains, the recently proposed HypTrails approach [453] (also see
Section 3.3.2) allows to compare hypotheses about sequential data, where hypotheses
represent beliefs in state transition probabilities that are derived from existing literature,
theory, previous experiments, or intuition with regard to the respective application domain.
This approach is used extensively to study human navigation behavior throughout this
thesis (cf. Part III). Figure 4.1 shows a concrete example on soccer data. It features
passes between players and shots at the goal (a). In this scenario, we are interested in
the strategy a team has used in a game, e.g., an offensive strategy, a defensive strategy,
or just random passing. For this purpose, we construct a Markov transition model using
the players and the goal as states, and the passes and shots as transitions between
these states (b). With HypTrails, we can then express and compare hypotheses (d-g)
about pass sequences by specifying different beliefs in transitions. For instance, a simple
hypothesis states that all transitions are equally likely (d). Other hypotheses may express
predominance of offensive passing (e), a left-flank strategy (f), or defensive play (g).
Given such hypotheses, HypTrails calculates the Bayesian evidence of the data under
each hypothesis based on which we can rank their relative plausibility (cf. Section 3.3.2).
Given the transition data (a), the approach ranks the uniform hypothesis (d) as the most
plausible one, as it resembles the overall data (b) the most.
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Figure 4.1.: An illustrating example for MixedTrails. In this figure, we show an illustrating
soccer example: We are interested in a team’s strategy in a specific game. We start with the
observed data on passes and shots (a). Using a simple Markov chain, we can model these as
transitions between states (b). The previously proposed HypTrails approach allows researchers
to compare homogeneous hypotheses about sequential data that express beliefs in transition
probabilities (d-g, strength of belief indicated by line width). Utilizing Bayesian inference, it then
determines the evidence of the data (b) under these hypotheses (d-g) and ranks the hypotheses
based on their plausibility; in this case, the uniform hypothesis (d) is the relatively most plausible
one. However, HypTrails is limited to homogeneous data, and does not allow for more fine-grained
hypotheses. Indeed, (c) reveals that splitting the data into halftimes allows for a significantly
better explanation of the data: A hypothesis that assumes offense (e) in the first halftime and
defense (g) in the second halftime appears to be a lot more plausible. MixedTrails enables the
comparison of such hypotheses on heterogeneous data.
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Problem. Simple Markov chain models, and consequently also the HypTrails approach,
assume homogeneous sequence data. As such, they cannot take into account heterogeneity,
i.e., behavior stemming from several underlying processes. For instance, research on
mobility has found starkly differing user groups such as tourists and locals [312], and
there exist different phases of Web navigation with distinct patterns [519]. Further
examples are discussed in Sections 2.1.5 and 2.2.5. Also, reconsidering our soccer scenario
from Figure 4.1, we can observe that the play style substantially differs for the 1st and
2nd half of the game (dashed and solid arrows). As a consequence, a hypothesis that
assumes offensive play for the first halftime and defensive play for the second halftime (cf.
Figure 4.1e and Figure 4.1g) could provide a better explanation for our data. However
such hypotheses cannot be formulated and compared with existing approaches.
Objective. Thus, our goal in this section is to propose a method that lets researchers
intuitively formalize and compare hypotheses about heterogeneous sequence data, such as
“The team played according to the offense hypothesis in the first halftime, and according
to the defense hypothesis in the second halftime.” In this context, we aim at a general
and flexible approach: allowing to group transitions by a variety of features, like user
groups, state properties, or the set of antecedent transitions on the one hand, and enabling
users to formulate probabilistic group assignments as required in the context of smooth
behavioral shifts or uncertain classifiers on the other hand.
Approach. To this end, we introduce theMixedTrails approach, which covers all necessary
aspects to enable the comparison of hypotheses on heterogeneous sequence data: (i) We
suggest a method to formalize hypotheses as a combination of several belief matrices in
combination with probabilistic group memberships; (ii) We propose the Mixed Transition
Markov Chain (MTMC) model that allows to capture such hypotheses; (iii) We show how
to elicit priors for this model according to the given hypotheses; (iv) We discuss exact
and approximate inference for our model; (v) We provide guidance in the interpretation
of the result plots. Finally, we demonstrate the benefits of our approach with synthetic
and real world datasets.
Structure and references. MixedTrails is based on the concepts of Markov chains and
builds upon HypTrails. For the corresponding background please see Sections 3.2 and 3.3,
respectively. In Section 4.2, we first introduce MixedTrails including a formal problem
statement, the definition of the underlying MTMC model, the elicitation of hypotheses
as priors for MTMC, model inference, and an example illustrating how to interpret the
results. Afterwards, we demonstrate MixedTrails on synthetic data (Section 4.3). For
examples in the context of real-world applications, please see Sections 7.4.3 and 11.2.
Finally, we discuss alternative choices and limitations of our approach in Section 4.4 and
review related work in Section 4.5, before we conclude in Section 4.6.

4.2. The MixedTrails approach

In this section, we introduce our approach MixedTrails for comparing hypotheses about
heterogeneous sequence data using Bayesian model comparison. To this end, we first
elaborate on the specific problem setting (Section 4.2.1) and explain how hypotheses for
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heterogeneous sequence data are structured. Then, we introduce the Mixed Transition
Markov Chain (MTMC) model (Section 4.2.2) — an extension of the basic Markov chain
model — that allows to incorporate such heterogeneity. By formulating hypotheses as
elicited priors over the model parameters of this model (Section 4.2.3), we can utilize
Bayesian model comparison to make relative judgments about the plausibility of the given
hypotheses. Finally, we derive an approach for model inference (Section 4.2.4) and give
guidelines for interpreting the results (Section 4.2.5). For illustrative purposes, we will
refer to the soccer example visualized in Figure 4.1. For an overview of the methodological
background of MixedTrails, we refer to Section 3.2 for a general review on Markov
chain models and to Section 3.3.2 for an introduction on the HypTrails approach [453].
Furthermore, we point to Tables A.1 and B.1 for a list of the most important notations.

4.2.1. Problem statement

One of the goals of this thesis is to compare hypotheses about heterogeneous sequence
data. That is, we consider datasets of human navigation in the form of transition sets
D = {t1, . . . , tm} between a set of states S = {s1, . . . , sn}. Such transition sets can be
derived from path datasets as introduced in Definition 1 by merging the transitions of
all paths.1 Based on such data, we aim to compare and rate the plausibility of a set of
given hypotheses H = {H1, H2, . . .} that express how the observed transitions may have
been generated. Extending HypTrails [453], we focus on transitions generated by several
independent processes.
Hypotheses. We describe a heterogeneous hypothesis H = (γ,φ) by two components:
group assignment probabilities γ and group transition probabilities φ. The group assign-
ment probabilities γ associate each transition t ∈ D in the dataset D with a probability
distribution γt which represents the probability for t to belong to one of the groups
G = {g1, . . . , go} defined by the hypothesis. We write all group assignment probabilities
for a hypothesis as γ = {γt|t ∈ D}, with γt = {γg|t|g ∈ G}. Here, γg|t is the probability
that transition t belongs to group g. Second, the group transition probabilities φ describe
the behavior of each group g ∈ G by specifying respective transition probabilities between
states. Formally, all group transition probabilities according to a given hypotheses are
written as φ = (φ1, ...,φo), with φg = (φi,j|g|si, sj ∈ S), where φi,j|g is the probability of
observing a transition to state sj given state si within group g. Note that a homogeneous
hypothesis can be regarded as a special case of a heterogeneous one where all transitions
are assigned deterministically to one group.
Comparison. Given several hypotheses, MixedTrails — just like HypTrails — establishes
a partial order v by employing Bayes factors to compare their relative plausibility with
respect to a dataset D. This is done by converting each hypothesis Hi into Bayesian priors
(see Section 4.2.3) of the generative model MTMC (see Section 4.2.2) and calculating the
marginal likelihood (i.e., Bayesian evidence).
Example. For illustration, again consider the soccer game example from Figure 4.1.
In the following, we specify two hypotheses for this scenario: a homogeneous one Hhom

1Note that transitions ti, tj ∈ D can have the same source and target states.
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Figure 4.2.: Hypotheses for heterogeneous sequence data. In MixedTrails, we formulate
hypotheses about heterogeneous sequence data. For example, in the soccer example, we define
two hypotheses: The homogeneous hypothesis Hhom (a) assumes that players just randomly pass
the ball around; the heterogeneous hypothesis Hhet (b) assumes an offensive strategy in the first
half of the game and a defensive strategy in the second half, cf. Figure 4.1. This is formalized
based on two components: group assignment probabilities γ, i.e., probability distributions over
the set of respective groups for each transition, and a belief matrix of group transition probabilities
φg for each group g. The soccer example features a special case, where group assignments are
deterministic, i.e., the probabilities are either 0 or 1.

and a heterogeneous one Hhet. The homogeneous hypothesis Hhom expresses the belief
that the players just kick around randomly. This can be formalized as a single matrix of
transition probabilities φuniform as shown in Figure 4.2a. Consequently, the corresponding
group assignment probabilities γone only assign transitions to a single group. As a more
fine-granular hypothesis using a heterogeneous structure, Hhet assumes that the soccer
team played by an offensive strategy in the first half of the game and by a defensive
strategy in the second half. For this, we need two separate transition probability matrices
(φoffense and φdefense), one for each halftime. Then, we assign each transition to the group
(halftime) it belongs to via γhalftimes. In this special case, transitions are assigned to
halftimes without uncertainty, thus, the probabilities used are either 0 or 1. The resulting
hypothesis is defined as Hhet = (γhalftimes, (φoffense,φdefense)) as visualized in Figure 4.2b.
Now, our approach MixedTrails determines the marginal likelihoods Pr(D|Hhom) and
Pr(D|Hhet) as a measure for the plausibility of the data under each hypothesis. Since
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Pr(D|Hhet) > Pr(D|Hhom), as demonstrated in Section 4.2.5, we assert that explaining
the data as a result of our heterogeneous hypothesis (Hhet) is more plausible than assuming
the defined homogeneous process (Hhom).
Flexibility. The soccer example from above features an important special case of our
approach, i.e., for the heterogeneous hypothesis, the assignment of transitions to groups is
deterministic γg|t ∈ {0, 1}. However, our method also supports arbitrary group assignment
probabilities. This is be useful when hypotheses assume gradual change between generating
processes (e.g., the team continuously switches from offense to defense during a game),
when they suggest that the generating entity switches between different processes (e.g.,
when the team unpredictably switches between offensive and defensive play), or if there
is uncertain or insufficient information available (e.g., the time of some passes was not
accurately recorded).
Overall, the ability to specify group assignment probabilities allows to formulate very

intricate dependency structures and may serve as an interface to more complex, possibly
latent processes. In particular, group assignment probabilities and consequently the
transition probabilities associated with each transition can depend on any information
associated with a transition, specifically including background information (e.g., user
properties, length and duration of the sequence, state properties, or the time of the
day), information derived from previously as well as subsequently visited states, or even
information about other traces. For instance, this allows for hypotheses modeling higher
order Markovian processes, i.e., by defining mx groups (where m is the number of states
and x is the order of the model) and setting the group assignment probabilities depending
on the state history of each transition. Some concrete examples on defining hypotheses
that take into account the overall sequence are featured in the experimental evaluation in
Section 4.3. Thus, even though there are some limitations and possible extensions (cf.
Section 4.4), all in all, MixedTrails provides a very flexible and easy to use framework to
model a very large and possibly complex set of hypotheses.

4.2.2. The Mixed Transition Markov Chain (MTMC) model

A standard Markov chain model is unable to capture heterogeneity in sequential data.
Therefore, we propose the Mixed Transitions Markov Chain (MTMC) model as an exten-
sion for which we can formulate heterogeneous hypotheses as beliefs over its parameters.
MTMC assigns each transition t ∈ D in the transition dataset D to a group g ∈ G =
{g1, ..., go}, which is drawn from an individual categorical distribution with parameters
γt = (γg1|t, . . . ,γgo|t), where γg|t denotes the probability of transition t belonging to
group g. Then, given a common state space, each group g ∈ G is associated with its own
first-order Markov chain. Thus, for each source state si, there is a categorical distribution
θsi|g = (θi,1|g, . . . , θi,m|g) over all potential target states. The parameters θi,j|g are
distributed according to a (prior) Dirichlet distribution Dir(αsi|g) with hyperparameters
αsi|g = (αi,1|g, . . . , αi,m|g). For shorter notation, we write the set of transition probabilities
over all states in a group as θg = (θs1|g, . . . ,θsm|g) and the set of transition probabilities
over all groups as θ = (θ1, . . . ,θo). Similarly, we denote the set of all hyperparameters
for a single group as αg = (αs1|g, . . . ,αsm|g), and the set of all hyperparameters over
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all groups, i.e., all Dirichlet parameters, as α = (α1, . . . ,αo). Finally, we write the set
of all group assignment probabilities for all transitions in the dataset as γ = (γt) with
t ∈ D. Given these definitions, considering only a single group (|G| = 1), MTMC is a
direct generalization of the a first-order Markov chain model.

Overall, the MTMC model is described by the following generative process that, given
a set of transitions D = {t1, . . . , tm}, generates for each transition tk ∈ D, a destination
state dstk for a known source state srck and known group assignment probabilities γtk :

1. For each group g ∈ G and each state si ∈ S,
choose transition probabilities θsi|g ∼ Dir(αsi|g).

2. For each transition tk:

a) Choose the group assignment zk ∼ Cat(γtk).

b) Choose the destination state dstk ∼ Cat(θsrck|zk).

4.2.3. Eliciting priors from hypotheses

As mentioned in Section 4.2.1, MixedTrails converts hypotheses into Bayesian priors
for the MTMC model (see Section 4.2.2). This process is called elicitation as already
mentioned in the context of HypTrails (Section 3.3.2.3). However, compared to HypTrails,
MTMC requires a different set of parameters: the group assignment probabilities γ and
the prior parameters α. While the group assignment probabilities are directly specified
by a hypotheses H = (γ,φ), see Section 4.2.1, the parameters α of the Dirichlet prior
need to be elicited from the transition probabilities φ consisting of transition probability
matrices of several groups.
Deterministic Assignments. For deterministic group assignments, i.e., γg|t ∈ {0, 1},
we determine the parameters αg of the Dirichlet distributions for each group g ∈ G
separately similar to the approach described for HypTrails in Section 3.3.2.3. That is, for
each group g ∈ G and each state si, we set the Dirichlet parameters based on the core
distributions φg defined by the hypothesis and a given concentration factor κ. Formally,
this is:

αi,j|g = κ · φi,j|g + 1. (4.1)

Here, the concentration factor κ reflects the strength of belief in the respective hypothesis
(the higher the concentration factor the more accurate a hypothesis has to be to yield high
marginal likelihood values). Different settings for the concentration factor lead to different
priors. In our approach, we compare hypotheses along a range of different concentration
factors, i.e., strengths of belief in the respective hypothesis.
Consider the heterogeneous hypothesis Hhet = (γhalftimes, (φoffense,φdefense)) from Fig-

ure 4.2b as an example. It features two groups (the first and second half of a soccer
game), and for each group g ∈ {1st half, 2nd half} it defines specific beliefs in certain
transition probabilities, via the matrix entries φi,j|g. For each group, a matrix of prior
parameters αg is determined according to Equation (4.1). The offense hypothesis for the
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first half suggests transition probabilities φs1|1st half = (0, 0, 3/4, 1/4, 0) for the first row of
the transition probability matrix. Choosing an arbitrary concentration factor of κ = 10,
we therefore obtain a Dirichlet prior with parameters αs1|1st half = (1, 1, 8.5, 3.5, 1).
Probabilistic Assignments. For probabilistic group assignments, i.e., 0 < γg|t < 1, we
need to adapt these basic priors to account for misassignments of groups. For example,
consider a scenario in which the dataset is divided into two groups that behave completely
different. Then, if some transitions cannot be assigned to groups with certainty, the model
will randomly associate some transitions which behave like the first group with the second
group, and vice versa. Thus, given uncertain group assignments, the behavior expected
from a set of transitions assigned to one group is actually a mixture of behavioral traits
of both groups. Consequently, we compute the number of pseudo-observations of the
Dirichlet priors for a group g as a mixture of hypotheses that is determined by the group
assignment probabilities of all transitions. For that purpose, for each transition tk, we
compute the probability that the model assigns tk to group g although it actually belongs
to group g′ (i.e., γg|tk · γg′|tk). This probability is then used as a weight for the respective
belief matrix φg′ . Formally:

αi,j|g = κ ·

 1

Zi
·
∑
tk∈D

∑
g′∈G

γg|tk · γg′|tk · φi,j|g′

+ 1, (4.2)

where 1/Zi represents a normalization factor to ensure that the transition probabilities
from each state to the other states in the mixture sum up to 1. Note that for deterministic
group assignments, the formula simplifies to Equation (4.1).

4.2.4. Model Inference

Similar to HypTrails (Section 3.3.2.2), MixedTrails uses the notion of Bayes factors (see
Section 3.3.1) for comparing hypotheses. Thus, for deriving relative plausibilities, we use
the MTMC model to determine the evidence (marginal likelihood) for each heterogeneous
hypothesis given data (cf. Section 4.2.1). The marginal likelihood can be understood as
an average over the likelihood of all parameter settings weighted by their prior probability
(given by the hypothesis). This is formally expressed as an integral over all parameter
settings θ:

Pr(D|H) =

∫
Pr(D|θ,γ)︸ ︷︷ ︸
likelihood

Pr(θ|α)︸ ︷︷ ︸
prior

dθ (4.3)

In the remainder of this section, we elaborate on how to compute the marginal likeli-
hood for our MTMC model given some observed data and any hypothesis (homo- and
heterogeneous). We start by deriving an analytical solution. However, the resulting
formula is computationally intractable for non-trivial datasets. Thus, we show that for
the special case of hypotheses with deterministic group assignments, the calculation can
be substantially simplified. Additionally, for the general case, we explain how it can be
efficiently approximated by using a sampling approach.
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Analytical solution. When ignoring the group assignment probabilities γ in Equa-
tion (4.3), the marginal likelihood of the MTMC model is equivalent to the homogeneous
Markov chain model for which an analytical solution exists [454]. However, in our setting,
we need to aggregate over all possible instantiations ω ∈ Ω of group assignments Ω: Each
instantiation ω maps each transition t to a group ω(t). The probability pω of an instantia-
tion ω is determined by the group assignment probabilities specified in the hypothesis, i.e.,
pω =

∏
t∈D γω(t)|t. For a fixed assignment to groups, we can then determine the overall

marginal likelihood as the product of marginal likelihoods of the individual groups. For
each group, the marginal likelihood can be calculated analytically as a combination of
beta functions over the hyperparameters for that group, and over the observed counts
in the data according to the fixed group assignment (see Singer et al. [454] for details).
Overall, we obtain the following formula (for an in-depth derivation see Appendix C):

Pr(D|H) =
∑
ω∈Ω

pω
∏
g∈G

∏
si∈S

B(Tsi|g,ω +αsi|g)

B(αsi|g)
, (4.4)

where Tsi|g,ω stands for the vector of transitions counts from si to all other states within
group g for a given group assignment ω.
Thus, the marginal likelihood of MTMC can be seen as a weighted average over the

marginal likelihood of all possible group assignments ω. Unfortunately, this solution is
computationally intractable for real world datasets because the number of different group
assignments |Ω| grows exponentially with each additional transition t ∈ D.

However, we can substantially decrease the computational costs for the important special
case of deterministic group assignments, i.e., where the group assignment probabilities are
either zero or one. Then, there is only one valid instantiation of the group assignments,
i.e., all but one weight pω are zero, and the formula from Equation (4.4) simplifies to:

Pr(D|H) =
∏
g∈G

∏
si∈S

B(Tsi|g +αsi|g)

B(αsi|g)
(4.5)

Thus, in this case, the marginal likelihood is equivalent to the product over the
marginal likelihoods across all groups. This can be calculated much more efficiently as the
computational complexity only linearly depends on the number of states and groups. The
formula also allows for leveraging existing parallelized approaches like SparkTrails [42].
Approximation. For the general, probabilistic case, calculating the marginal likelihood
of an MTMC model analytically with Equation (4.4) is computationally intractable.
Therefore, we show how we can efficiently approximate it by direct sampling. According
to the formula, the overall marginal likelihood is a weighted average over the marginal
likelihoods of all group assignments Ω. To approximate this, we sample from the space of
all group assignments Ω according to their respective probability pω and calculate the
average marginal likelihood given these sampled group assignments Pr(D|α, ω). Since for
individual transitions the process of choosing groups is independent from each other, a
single group assignment can be sampled by drawing the group zk for each transition tk ∈ D
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according to its group assignment distribution zk ∼ Cat(γtk) (also see the generative
process in Section 4.2.2). The sampling procedure follows the intuition that factors with
small group assignment probabilities contribute less to the overall marginal likelihood.
Formally, we can compute the approximated marginal likelihood from a list of sampled
group assignments Ω′ as:

Pr(D|H) ≈ 1

|Ω′|
∑
ω∈Ω′

∏
g∈G

∏
si∈S

B(Tsi|g,ω +αsi|g)

B(αsi|g)︸ ︷︷ ︸
Pr(D|α,ω)

(4.6)

In our experiments, we found that the results are stable for very small numbers of
iterations (less than 50) if the number of transitions is sufficiently high. This allows to
run our experiments in Section 4.3 in only a few hours on a regular desktop machine.

4.2.5. Visualizing and interpreting results

In this section, we describe our recommended way of performing experiments, visualizing
results, and interpreting them. To this end we use the soccer example from Figure 4.1
and investigate which strategies the soccer team has used. For instance, they may have
passed the ball randomly, or they may have played by a more intricate strategy. More
specifically, given the observed transitions from Figure 4.1 (a-c), we aim to compare the
plausibility of the different beliefs in transition probabilities from Figure 4.1 (d-g) utilizing
the marginal likelihood as elaborated in Section 4.2.4. In particular, we study the four
hypotheses uniform, offense, left-flank, and defense, as well as a data hypothesis. The
latter uses the actual observed transition probabilities as belief; thus it is only used for
comparison. We consider these beliefs for three group assignments:

(a) a homogeneous one (all transitions are in one group),

(b) a group assignment defined by the halftime of the passes/shots, and

(c) a completely random group assignment.

The hypotheses are formulated analogously to the examples covered in Section 4.2.3. The
results are shown in Figure 4.3 (a-c). In each plot, the x-axis denotes increasing values of
the concentration factor κ, which expresses an increasingly strong belief in the hypotheses.
The y-axis shows the marginal likelihood on a logarithmic scale; each line represents
one given hypothesis; solid lines refer to heterogeneous hypotheses and dashed lines to
homogeneous hypotheses. In general, higher values indicate more plausible hypotheses.
Relativity. An essential issue for interpreting the results from MixedTrails (or any
method using Bayes factors) is that results are relative. Which means that even if one
hypothesis outperforms all other hypotheses under consideration, this does not necessarily
imply that it models the data well. However, the goal of our approach is to compare
existing hypotheses from literature, domain experts, ideas, or intuition. The goal is not
to find models which perform well for prediction or similar tasks. Nevertheless, it may
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(a) Homogeneous hypotheses.
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(b) Heterogeneous hypothe-
ses based on a split accord-
ing to halftimes.
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(c) Heterogeneous hypothe-
ses based on a random split.

Figure 4.3.: Results for the illustrating example. This plot shows the MixedTrails results
for the illustrating soccer example, i.e., marginal likelihood values of different hypotheses on a
logarithmic scale for increasing concentration factors κ (i.e., strengths of belief). We observe that
among the hypotheses without grouping, the uniform hypothesis performs best (a). However, far
more plausible explanations can be obtained by heterogeneous hypotheses that assume different
behavior in both halftimes (b). Finally, randomly splitting the data into arbitrary groups (A/B)
leads to less plausible explanations (c).

be desirable to validate the hypotheses with regard to their generative quality. For this,
we suggest the comparison with the uniform hypothesis (as we do in this example) or a
hypothesis with a flat (uninformed) prior (κ = 0). The former assumes all transitions to
be equally likely, while the latter is equivalent to assuming that all transition probability
distributions are equally likely. Also, additional baselines can arise naturally in specific
application domains. For example, if analyzing navigation behavior between web pages,
a baseline could be that only transitions to linked pages are equally likely, and not to
all web pages in the dataset (cf. Dimitrov et al. [144]). We consider the relative order of
hypotheses as still viable and interesting if the hypotheses are better than such a baseline
hypothesis because they cover at least some aspects of the transition processes. At the
same time, if all hypotheses perform worse than the flat prior (κ = 0), then the data
may be too complex for the chosen hypotheses, or the facilitated background data is not
sufficient to explain the underlying processes.

Significance. With regard to the significance of differences, we refer to Kass and Raftery’s
established interpretation table [273]. The table states that conclusions should only be
drawn for sections of the marginal likelihood plots where the values are farther apart
than 10 (also see Section 3.3.1 for more information). In these cases, the change of the
posterior is to be interpreted as “decisive”. Consequently, in this thesis, we only draw
conclusions from such decisive results when applying MixedTrails.

77



4. MixedTrails: Bayesian hypothesis comparison on heterogeneous sequential data

General properties of curves. Different values along the x-axis enable interpretation
beyond providing a relative order of hypotheses: For the left-hand side of the plots (values
of κ close to zero) the influence of the transition probabilities of a hypothesis is very weak
and the marginal likelihood depends mostly on the group assignment. Thus, the higher
the marginal likelihood for κ = 0, the more a heterogeneous hypothesis can benefit if it
models the transition probabilities in each group correctly.
For growing values of κ, the Bayesian framework increasingly takes into account the

quality of the chosen transition probabilities for the corresponding group assignments.
At first it allows for a large tolerance, i.e., it integrates over variations of the specified
transition probabilities. Then, it consecutively decreases this tolerance, requiring that
the transition probabilities are very precise. For very high values of κ, the marginal
likelihood converges towards the likelihood of the hypothesis. Consequently, the marginal
likelihood of heterogeneous hypotheses that assume identical transition behavior in all
groups converges towards their homogeneous counterparts (cf. uniform and 1st/2nd:
uniform in Figure 4.3b). This is because there is no difference between a homogeneous
and a heterogeneous hypothesis if the transition probabilities in each group describe the
same generative process.

Overall, the relation of hypotheses along increasing concentration factors gives intricate
information about the influence of the different components of the compared hypotheses.
For more information and an illustrating example on the interpretation of marginal
likelihood curves in the context of homogeneous hypotheses, also see Section 3.3.2.

Results on homogeneous hypotheses. Figure 4.3a shows results for the homogeneous
hypotheses. As expected, the data “hypothesis”, which is inferred from the actual observed
transitions, achieves the highest marginal likelihood values for all κ. Apart from that, the
uniform hypothesis explains the observed transitions best. The left-flank, the offense, and
the defense hypothesis exhibit strongly decreasing marginal likelihoods for an increasing
concentration factor, which indicates that these hypotheses are not supported by the
observed data. These results can also be obtained by applying HypTrails.

Results on heterogeneous hypotheses: the split. Our approach MixedTrails enables
us to also compare more fine-grained, heterogeneous hypotheses. Figure 4.3b features
four heterogeneous hypotheses (solid lines) that assign the data deterministically into two
groups, i.e., the first and the second halftime. Additionally, it shows the homogeneous data
hypothesis and the uniform hypothesis for comparison (dashed lines). For a concentration
factor κ = 0 the marginal likelihood depends only on the group assignment. Therefore,
hypotheses with the same group assignment probabilities start at the same marginal
likelihood level. Now, since our dataset indeed features different behavior in both
halftimes as the group assignment of our heterogeneous hypotheses suggests, their marginal
likelihood is higher compared to the homogeneous hypotheses at κ = 0. This indicates
how strongly the split divides transitions into differing processes, before delving deeper
into the plausibility of the expressed hypotheses with an increasing concentration factor κ.

Results on heterogeneous hypotheses: the curves. For higher values of κ, the
marginal likelihoods diverge: The offense/defense hypothesis — in the first halftime
players behave as the offense belief suggests, and in the second halftime as the defense
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belief suggests (see Figure 4.2) — is fully supported by the observed data and thus yields
the highest values for all κ. In comparison to the homogeneous hypotheses, this curve can
be interpreted as: “This hypothesis features a good group assignment and the transition
beliefs reflect the behavior in the observed data well.” If we assign the same belief in
transition probabilities to both halftimes, e.g., uniform probabilities, or the globally
observed transition probabilities (data), then smaller values are obtained, indicating that
these transition beliefs differ from the observed data. Additionally, for very large values
of κ, the scores converge with the ones from the respective homogeneous hypothesis
because the corresponding heterogeneous hypothesis does not define different transition
probabilities for each group, which eventually nullifies the effect of the split. Finally, if
we use transition beliefs that are not actually supported by the data for both groups, e.g.,
a left-flank and right-flank preference in the two halftimes, then the marginal likelihood
curve rapidly declines. The respective curve can — in comparison to the other curves —
be interpreted as: “The hypothesis uses a good group assignment, but the transition beliefs
are not reflected in observed data.”

Results for a random split and summary. Figure 4.3c shows the same four hypothe-
ses, but assigns transitions to two arbitrary groups randomly (A/B). Since a random
group assignment increases the model complexity, but does not allow for a better model
of transition behavior, all hypotheses start with a lower value than the homogeneous
hypotheses on the left-hand side of the plot. For larger values of κ, we can see the same
convergence behavior as before, but, overall, the marginal likelihoods of the heterogeneous
hypotheses are substantially lower and also rank lower than their homogeneous coun-
terparts. This is expected of hypotheses that introduce groups without explaining the
transition probabilities in each group significantly better than without groups. Overall,
these examples give a broad overview of possible MixedTrails results. More examples are
covered in Section 4.3.

4.3. Experiments

In this section, we demonstrate the applicability and benefits of our approach with
experiments on synthetic data. An open source implementation in Python2 as well as the
datasets3 are freely available. Conclusions from the experimental results drawn in the
text rely on results that are “decisive” with respect to the established interpretation table
given by Kass and Raftery [273], cf. Section 4.2.5. For an application of MixedTrails on
real-world data please see Section 7.4.3.

4.3.1. Deterministic group assignments

We consider three synthetic examples in order to showcase the properties of MixedTrails
in a controlled setting. For each example, we generate a transition dataset according
to a predefined mechanism and compare the plausibility of several homogeneous and

2http://dmir.org/mixedtrails
3The scripts for generating the synthetic data are included in the code.

79

http://dmir.org/mixedtrails


4. MixedTrails: Bayesian hypothesis comparison on heterogeneous sequential data

heterogeneous hypotheses. We show that those hypotheses that best capture the known
mechanism generating the synthetic data are indeed reported as the most plausible ones.

Datasets. The synthetic transition datasets are based on a random Barabási-Albert
preferential attachment graph [35] with 100 nodes and 10 edges for each new node. Each
node has a random color c ∈ {red, blue} assigned with a probability of pc = 0.5. From
this graph, we derive three different transition datasets generated by 10,000 random
walkers with different characteristics. Just like each state, each walker also has a color
c ∈ {red, blue} assigned randomly with pc = 0.5. Each walker chooses her first node
randomly and navigates through the network generating transitions depending on different
mechanisms which we describe next. The walkers stop after ten steps.Note that the
parameters in this study have been chosen arbitrarily. Other settings (e.g., altering the
number of walkers, the number of steps, or color probabilities) yield qualitatively similar
results. However, reducing the size of the datasets too much will eventually cause the
evidence for the correct hypotheses to be less prominent.

For the first dataset Dlink, we consider link walkers that choose the next node uniformly
from all adjacent nodes, independent of the walker color. This corresponds to a transition
probability matrix θlink equal to the (row-wise) normalized adjacency matrix of the
underlying graph. For the second dataset Dcolor, walkers of the “red” (“blue”, respectively)
group exclusively behave according to a probability matrix θred (θblue) which adapts θlink
such that transitions to red (blue) nodes are ten times more likely. The third dataset
Dmem is generated by “memory walkers” that dynamically choose their next state based
on their history, i.e., they use a different transition matrix dependent on the colors of the
states they have already visited (including the current state). In particular, if they have
visited more red than blue nodes, they use the matrix θred, and if they have visited more
blue than red nodes, they use the matrix θblue. In case of a draw, they use the random
transition matrix θlink.

Hypotheses. For the three datasets we construct corresponding hypotheses: first, the
homogeneous hypothesis Hlink = (γone,φlink), which expresses the believe that there
are no groups (cf. γone) and all transition are randomly chosen from the available links,
thus φlink = (θlink); secondly, the color-preference hypothesis Hcolor = (γcolor,φcolor)
maps each transition to a group based on the color assigned to its walker and uses
the actual probability matrices for the transitions in the groups as belief matrices:
φcolor = (θred,θblue); and thirdly, the memory hypothesis Hmem = (γmem,φmem) reflects
the generating mechanism in the third dataset: The transitions are assigned to groups
according to the majority of node colors already visited, and the transition belief matrix is
constructed as described in the generation of the third dataset: φmem = (θred,θblue,θlink).
To illustrate how our approach copes with groups that introduce unnecessary complexity,
we add a fourth hypothesis Hlink-colored = (γcolor, (θlink,θlink)) that uses the grouping
into “red” and “blue” walkers, but assumes the same movement behavior for both groups,
i.e., equal transition likelihood for all links.

Results. Using MixedTrails, we compare these four hypotheses on all three datasets.
The results are visualized in Figure 4.4. For the link dataset Dlink (Figure 4.4a) we
find that the homogeneous hypothesis reflects the data very well and thus achieves the
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(a) Link dataset
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(b) Homophily dataset
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(c) Memory dataset

Figure 4.4.: Results for synthetic data with deterministic group assignments. We
compare homogeneous (Hlink) and heterogeneous hypotheses (Hlink-colored, Hcolor and Hmem) on
three synthetic datasets (Dlink, Dcolor and Dmem). We observe that the hypotheses that are
fitting the respective datasets work best, illustrating that the MixedTrails approach can identify
the correct ordering of the defined hypotheses.

highest marginal likelihood (ML) values for all concentration factors. The differences
for small concentration factors κ (left-hand side of the plot) indicate that the other
group assignment probabilities used by the heterogeneous hypotheses do not introduce
valuable information. At first, both heterogeneous hypotheses show increasing ML for
increasing concentration factors κ since the hypotheses carry information with regard to
the underlying transition processes, i.e., which network links are contained in the data.
With increasing concentration factors κ, however, the emphasis on some specific links
(i.e., to red or to blue nodes), which is not reflected in the data, leads to a drop of the
ML. Furthermore, the memory hypothesis is closer to the data than the color hypothesis
as it covers transitions to red and blue nodes in more equal proportions.

Next, we consider the color dataset Dcolor (Figure 4.4b). The ordering of the hypotheses
on the left hand side of the plot indicates that the assignment of transition into groups (by
walker color) adds valid information to the corresponding hypotheses. However, while the
color preference hypothesis Hcolor models the transition behavior within the groups very
well, the grouped link hypothesis Hlink-colored does not. This explains the diverging ML
values for an increasing concentration factor. When comparing the simple link hypothesis
Hlink and the memory hypothesis Hmem, we observe that by introducing an incorrect
grouping, the memory hypothesis starts at a lower ML values than the link hypothesis
which does not introduce any groups. However, with increasing concentration factors, the
memory hypothesis starts to perform better, since, in contrast to the link hypothesis, it
does incorporate the red and blue transition behavior even if on differing (but somewhat
color-consistent) transition groupings. Thus, overall, our model allows to establish the
correct ordering of the hypotheses based on the processes used to generate the data.

Finally, we consider the memory dataset Dmem (Figure 4.4c). Here we can observe that
— as expected — the memory hypothesis Hmem performs best for all values of κ. The
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Figure 4.5.: Results for synthetic data with probabilistic group assignments. The
violet, mixed hypothesis, using probabilistic group assignment probabilities, is the most plausible
one for increasing concentration factors as it directly models the processes underlying the data. The
violet, naive hypothesis illustrates the integral role of the mixing step, as skipping it significantly
reduces the performance of a hypothesis even though the underlying processes were correctly
understood. Further details are discussed in Section 4.3.2.

group assignment according to walker colors does not correlate with the actual groups in
the data and thus leads to lower ML value for low values of κ compared to a homogeneous
hypothesis. For high values of κ, we see that the color hypothesis Hcolor does not model
the groups well compared to the hypotheses Hlink and Hlink-colored that assume equal
likelihood of all links.
Overall, MixedTrails yields results that are in line with the actual generation process

of the datasets. Our approach thus allows to derive information about the quality
of the group assignments as well as the transition behavior within the groups. The
strongly diverging characteristics of the different hypotheses illustrates the flexibility of
MixedTrails.

4.3.2. Probabilistic group assignments

So far, we have only considered deterministic group assignment probabilities in the
experiments, i.e., assigning transitions to a single group by only using binary probabilities:
γg|t ∈ {0, 1}. However, there is a wide variety of situations where it is useful to consider
probabilistic group assignments or fuzzy walkers, e.g., when considering smooth behavior
transitions between different times of a day, when transitions are assigned to groups by
an uncertain classifier, or when walkers randomly choose between different movement
patterns. Here, we explore probabilistic group assignments in a synthetic dataset. For a
real world example of an uncertain classifier, see Section 7.4.3.

Dataset. We use the same underlying network as in the previous example to construct
a dataset. However, instead of “red” and “blue” walkers, the sequences are now generated
by walkers with “mix colors”, called violet walkers, i.e., the walkers randomly choose to
walk according to the red θred or to the blue θblue transition probability matrix at each
step. For example, a violet walker w associated with a shade of violet sw = 0.3 will choose
to be a red walker for 30%, and a blue walker for 70% of her transitions. We create a
dataset Dviolet of 10,000 walkers that each perform 10 transitions. We assign a shade
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of violet sw to each walker w, which we draw from a Beta distribution sw ∼ Beta(1, 1).
Before each transition of a walker, she randomly draws a color c ∈ {red, blue} according
to her shade of violet sw using a Bernoulli distribution c ∼ Bernoulli(sw). Then, she
uses the respective transition matrix θred or θblue dependent on the chosen color c to
determine her next destination. As in the previous experiment, altering the parameters
of this study will not change the results of this study qualitatively. However, considering
the probabilistic nature of our approach, reducing the size of the datasets too much will
eventually result in random inconsistencies between runs and cause the evidence for the
correct hypothesis to be less prominent.

Hypotheses. As hypotheses, we define Hlink, Hlink-colored and Hmemory analogously to
Section 4.3.1. In addition, we introduce a hypothesis Hviolet = (γviolet,φviolet) specifically
tailored to violet walkers. Thus, we define the group dependent transition probabilities
as φviolet = (θred,θblue). Now, violet walkers choose transition probability matrices
probabilistically dependent on their shade of violet. Using our MTMC scheme, this can
be modeled by setting the corresponding group assignment probabilities according to a
walker’s shade of violet sw: γg|tw = (sw, 1− sw). That is, each transition tw by walker w
has a probability of sw to be a red transition and a probability of 1− sw to be from the
blue transition probability matrix.

Results. The results are shown in Figure 4.5. The first observation is that the violet
hypothesis Hviolet (mixed) works best for increasing concentration factors. Note that
we consider two variants of the violet hypothesis, one (violet, mixed) elicited using the
mixing method proposed in Section 4.2.3 and one (violet, naive) elicited as if it was a
deterministic hypothesis. The results show that the mixing step is an integral part of
MixedTrails, as skipping it significantly reduces the performance of the heterogeneous
hypothesis even though the underlying processes were correctly understood.

As for the other hypotheses, the link hypothesis works best. This is because, generally,
a perfectly violet walker (sw = 0.5) behaves exactly like a link walker. This also explains
the differing results for lower concentration factors: The grouping introduced by the violet
hypothesis injects complexity which is not splitting transitions in a manner that can easily
be explained. Thus, for low concentration factors, which imply a large uncertainty in the
hypothesis, this reduces the plausibility of the more complex hypothesis. However, with
growing concentration factors the better modeling of the transition probabilities justifies
the added complexity making the violet (mixed) hypothesis the most plausible one.

With regard to the increased complexity, the colored (heterogeneous) link hypothesis
(link-colored) has the same disadvantage as the violet hypothesis; consequently, it is
inferior to the homogeneous link hypothesis. The memory hypothesis has the lowest
plausibility as it does not reflect the generative process of the dataset and introduces
three groups instead of just two.

Overall this example shows that, by using MixedTrails, heterogeneous data can be
modeled accurately and that the mixing procedure for eliciting probabilistic hypotheses
as introduced in Section 4.2.3 is an integral part of the approach.
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4.4. Discussion

With MixedTrails, we have proposed a powerful approach to formulate and compare
hypotheses about heterogeneous sequence data. In this section, we discuss some alternative
choices as well as possible misunderstandings and shortcomings of our method.

Comparison, prediction, and conception. MixedTrails is a method for hypothesis
comparison (Section 1.1). This is also sometimes called a deductive approach in certain
contexts [63, 240, 491] — meaning that it requires a set of predefined hypotheses based
on ideas and theories from the application domain as input and compares them using
observed data. While the corresponding results also give an indication of the predictive
potential of hypotheses, we do not fit them to the data. For utilizing the data to learn
models that excel at prediction, a multitude of other, more specialized methods are
available [e.g., 172, 302, 545]. Note, that these methods usually do not yield directly
interpretable results. If they do [e.g., 172], they can be used for hypothesis conception
(Section 1.2.2). This is sometimes also called an inductive setting [63, 491] — taking the
opposite approach than MixedTrails: such methods use observations to extract patterns
or regularities from which new hypotheses or theories can be derived. We develop one of
such approaches in Chapter 5, i.e., SubTrails for discovering subgroups with exceptional
transition behavior. There are also other specialized approaches useful for conceiving
novel hypotheses, e.g., methods for segmentation, labeling, or clustering [64, 177, 404,
494, 504]. However, in this thesis, we focus on subgroup discovery due to its inherently
interpretable nature.

Extensions and alternative approaches. While MixedTrails provides a very flexible
and easy to understand framework for specifying and comparing hypotheses, there is
a variety of possible extensions and alternative approaches. For example, in this work,
we employ priors for transition probabilities, but specify group assignment probabilities
directly and fixed, which somewhat forces the user to be very specific with regard to
group assignments. In contrast, using a flat prior over group assignments, the user could
compare hypotheses that introduce groups of transition probabilities without having to
specify which transition belongs to which process. Also, MixedTrails can not directly
express dependencies between the groups of the transitions within a sequence as for
example possible in Markov switching processes such as the Hidden Markov model (cf.
for instance the concept of “stickiness” as considered by Fox et al. [177] and Wetzels et al.
[521]). That is, while we can construct hypotheses in a way such that group assignment
probabilities are derived by Hidden Markov structures, hidden state dependencies can
not be explicitly modeled. We could resolve this by using more complex models for
sequential data. This, however, would come at the cost of substantially increased efforts
for specifying model parameters in the hypotheses, especially considering the wide range
of incorporated background knowledge. Overall, MixedTrails tries to balance the amount
of parameters required to formulate a hypothesis against expressiveness. Nevertheless,
we acknowledge the potential of formulating more complex dependencies with the help
of more complex models, especially when considering the possibility of flat/uninformed
priors over certain parameter groups, but leave further studies to future work.
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MixedTrails vs. separate HypTrails comparisons. A simplistic alternative to our
approach could be to apply the original HypTrails method for homogeneous data separately
to the groups of a hypothesis. This, however, is limited to deterministic group assignments
and does not allow to compare hypotheses with different group assignments (or no group
assignments at all). In addition, MixedTrails provides the theoretical background on
how to aggregate results for the individual groups, i.e., by multiplying their marginal
likelihood.

Using different strengths of belief. We are using different strengths of belief (i.e.,
concentration factors κ) in order to study different properties of our hypotheses. Cal-
culating the marginal likelihood for very large concentration factors κ approximates
the likelihood of the model for fixed parameters, which is commonly used to compare
parameter settings in Frequentist statistics (e.g., via a likelihood ratio test). However,
by also investigating lower concentration factors, we obtain additional information on
the quality of the group assignments (cf. Section 4.2.5). Furthermore, our approach
enables the observation of the dynamics for growing concentration factors, which allows
us to judge whether a hypothesis covers predominant factors of the underlying processes
generating the sequential data. Thus, we believe that the analysis based on different
concentration factors can yield a more detailed comparison of hypotheses than other, one
dimensional measures, such as the model likelihood, which is included in our approach as
a special case and shown on the right-hand side of our result plots.

Nevertheless, we acknowledge that it may be useful to derive a single number by which
hypotheses can be compared. To achieve this we could either set a fixed κ according to
some background information or, in a more Bayesian way, we could treat the concentration
parameter κ as a free parameter and marginalize over it. This, however, would require
specifying a prior over this free parameter, which is inherently a difficult choice. As
a simple solution, we propose to compute the average marginal likelihood over a set
of κ values. This is equivalent to a prior that regards these values as equally likely.
Overall, summarizing result curves into a single value in this way requires additional
task-dependent choices and comes with a loss of information with regard to the result on
the one hand, but allows for a more compact representation of results on the other hand.
Developing guidelines for choosing appropriate priors over κ remains an open issue for
future work.

Efficiency and convergence. In the general case, the marginal likelihood of the MTMC
model has to be approximated. While the method from Section 4.2.4 has converged
quickly (� 50 iterations) so that we were able to calculate our results on regular consumer
hardware in a few hours, parallelizations along the lines of [42] may be useful for larger
datasets. We have also experimented with other methods for approximating the marginal
likelihood such as by Chib [109], but have found irregularities in the convergence behavior.
Further studies may address both, the parallelization of our method and exploring other
approximation schemes.

Multiple comparisons. Our approach enables the comparison of multiple hypotheses
against each other. In that direction, it can also be checked whether one of the hypotheses
performs better than a simple baseline hypothesis (such as the uniform hypothesis). If
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many hypotheses are tested in this way, then the multiple comparison problem should be
taken into account. That is, even if hypotheses are generated purely at random, some of
them would appear to be statistically significantly better than the baseline, cf. Benjamini
and Hochberg [54]. Although our approach is in principle affected by this problem, we see
this issue as non-crucial in our setting as (i) the main goal of our approach is not to show
whether one of our hypotheses can beat a baseline, but to compare hypotheses against
each other (pairwise) and (ii) we use only a comparatively small set of hand-elicited
hypotheses in our comparisons. Apart from that, there is intense discussion how multiple
comparisons are to be viewed from a Bayesian perspective, see for example [197, 216].
Nonetheless, exploring the challenges of multiple comparisons is an issue that we will
study more in-depth in future work.

4.5. Related work

MixedTrails is based on HypTrails introduced by Singer et al. [453] (also see Section 3.3.2).
HypTrails as well as our own approach, MixedTrails, build on the concept of Markov
chains. Corresponding related work on the application of Markov chains to human
navigation behavior is covered in Chapter 2 and Section 3.2.
To the best of our knowledge Markov chains and their extensions (as covered in Sec-

tion 3.2.2.1) have not been employed for the comparison of hypotheses so far. This
specifically includes variants of the mixed Markov model [461]. Additionally, the expres-
siveness of most these models is limited [e.g., 223, 405, 419, 461], i.e., some hypotheses
formulated using MixedTrails can not be expressed with these models.

Another set of Markov chain extensions related to our approach is the class of Markov
switching processes [177, 411], which model observations dependent on hidden Markovian
dependency structures. For more examples, please see Section 3.2.2.1. There are also
methods based on, or related to, these methods which are used for prediction, clustering
or segmentation [171, 181, 212, 347], including, e.g., Bayesian non-parametric methods
[177, 482] which adjust their complexity based on the data. However, such methods fit
models to the data, i.e., they learn model parameters. Sometimes these model parameters
can be used to find new hypotheses, but the corresponding process is usually tedious as
it often requires understanding possibly arbitrarily complicated probability distributions.
Also, while, e.g, Hidden Markov models were applied to compare streaky behavior with a
baseline model [521], to best of the authors knowledge, there are no general approaches
to apply Markov switching processes for formulating and comparing existing hypotheses
in the context of background data.

For a broad overview on work about model comparison as applied by MixedTrails, we
refer to Section 3.3.3 for a more detailed discussion. With regard to model comparison in
the context of Markov chains, statistical methods for comparing the fits of varying Markov
order were summarized in [454]. This includes likelihood ratio tests, information-theoretic
AIC, BIC, and DIC approaches, or the Bayes factor. MixedTrails focuses on comparing
fits by using marginal likelihoods and Bayes factors [474]; these have the advantage of
an automatic built-in Occam’s razor balancing the goodness of fit with complexity [273].
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For a more detailed discussion on alternative methods for model comparison, we refer to
Section 3.3.3. Additionally, instead of only using a flat Dirichlet prior (as often the case
in Bayes model comparison), we also utilized the sensitivity of the marginal likelihood on
the prior for comparing theory-induced hypotheses within the Bayesian framework With
this, we followed the HypTrails approach (cf. [453] and Section 3.3.2) which was inspired
by, e.g., [287, 423, 496]. To the authors’ knowledge, there exist no previous approaches
for the comparison of hypotheses about transition behavior that differentiate between
several groups contained in the data. Our contribution (in the form of MixedTrails) is in
line with a general trend towards Bayesian methods for data analysis [50, 288].

4.6. Conclusion

With MixedTrails, we introduced a Bayesian method for comparing hypotheses about
the underlying processes of heterogeneous sequence data. MixedTrails incorporates i) a
method for formulating heterogeneous hypotheses using ii) the Mixed Transition Markov
Chain (MTMC) model, which enables specifying individual hypotheses for very flexible
subsets of transitions, i.e., with regard to certain user groups, state properties, or the
set of antecedent transitions. Furthermore, iii) we introduced methods for eliciting
hypotheses as parameters for this model, iv) showed how to calculate the marginal
likelihood, and v) provided some guidance on how result plots can be interpreted to
compare the corresponding hypotheses. The benefits of our approach were demonstrated
on synthetic datasets and will be further exemplified on real-world data throughout this
thesis (Sections 7.4.3 and 11.2). Overall, MixedTrails enables us to cope with one of the
major challenges of understanding human navigation behavior identified in Chapter 1,
i.e., formulating and comparing hypotheses incorporating the inherent heterogeneity of
human navigation.

In the future, we may explore our method in additional real-world applications, such as
investigating the movement of (groups of) Flickr users (beyond tourists and locals, cf.
Section 7.4.3), or studying groups of editors on Wikipedia. Furthermore, more complex
priors or hierarchical models may allow for more powerful ways of expressing hypotheses.
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exceptional sequential behavior

As many studies have found, human navigation behavior is a heterogeneous process
(cf. Sections 2.1.5 and 2.2.5), e.g., Marchionini [340] find differences in navigation
behavior between younger and older users of a full-text electronic encyclopedia. While
the MixedTrails approach, proposed in Chapter 4, allows to formulate and compare
heterogeneous hypotheses about human navigation behavior, i.e., incorporating multiple
sub-processes to explain a given set of observations, it requires that interpretable subsets
of the data already exist for which navigational hypotheses can be formulated. Applying
exceptional model mining can alleviate this issue: In this chapter, we propose an approach
called SubTrails for mining descriptive subgroups (e.g., “male tourists from France”) with
exceptional transition behavior. This gives insights into the underlying heterogeneous
processes of human navigation, and thus supports the conception of novel hypotheses (cf.
Section 1.2.2). This chapter is based on our previously published article on SubTrails [312].

5.1. Introduction

Exceptional model mining [149, 307], as reviewed in Section 3.4, is a framework that
identifies patterns which contain unusual interactions between multiple target attributes.
In order to obtain operationalizable insights, it focuses on the detection of easy-to-
understand subgroups, i.e., it aims to find exceptional subgroups with descriptions that
are directly interpretable by domain experts.
Problem setting. While we have introduced a method for comparing hypotheses about
heterogeneous navigation data with our MixedTrails approach in Chapter 4, coming up
with a set of heterogeneous hypotheses to compare is not an easy task. In particular, either
subsets of the observed data (e.g., younger vs. older students) have to be selected by hand,
thus, resulting in a tedious process of finding and checking navigational characteristics
for interesting subsets. Or, if discovered in an unsupervised fashion (e.g., clustering), the
subsets are usually not straight forward to interpret because often descriptive attributes
are not part of the discovery process. Applying exceptional model mining to the observed
data can address this problem. In particular, it can be used to automatically identify
subgroups of people (such as “male tourists from France”) or sub-segments of time (such
as “10 to 11 p.m.") that exhibit unusual movement characteristics, e.g., tourists moving
between points-of-interest or people walking along well-lit streets at night. Similarly, this
method can discover subgroups of web-users with unusual navigation behavior. Also,
there are many application scenarios beyond navigation analysis, such as discovering
companies with unusual development over time Judge and Swanson [262].

89



5. SubTrails: Mining subgroups with exceptional sequential behavior

Approach. To enable the application of exceptional model mining to mining subgroups
with exceptional transition behavior, we introduce first-order Markov chains as a novel
model class for exceptional model mining. To apply exceptional model mining with
this model, we derive an interestingness measure that quantifies the exceptionality of a
subgroup’s transition model. It measures how much the distance between the Markov
transitions matrix of a subgroup and the respective matrix of the entire data deviates
from the distance of random dataset samples. This measure can be integrated into any
known search algorithm. We also show how an adaptation of our approach allows to
find subgroups specifically matching (or contradicting) given hypotheses about transition
behavior [cf. 44, 453, 503]. This enables the use of exceptional model mining for a new type
of studies, i.e., the detailed analysis of such hypotheses. We demonstrate the potential of
the proposed approach on several synthetic datasets. For an application on real-world
data featuring human navigation behavior, we refer to several of our case studies (cf.
Sections 7.4.2 and 11.3).

Structure and references. In this section, we heavily rely on Markov chains and the
framework of exceptional model mining. For background on both concepts please refer
to Sections 3.2 and 3.4, respectively. The main approach for mining subgroups with
exceptional transition behavior is introduced in Section 5.2. Section 5.3 presents experi-
ments and results on synthetic data. For applications on real-world data featuring human
navigation behavior we refer to several of our case studies (cf. Sections 7.4.2 and 11.3).
Finally, we discuss related work in Section 5.4, before we conclude in Section 5.5.

5.2. The SubTrails approach

Given a set of state sequences and additional information on the sequences or parts of
sequences, our main goal is to discover subgroups of transitions that induce exceptional
transition models. We formalize this as an exceptional model mining task.

For this purpose, we first derive a dataset D of transitions with model attributes AM
and describing attributes AD (see Section 5.2.1). These allow to form a large set of
candidate subgroup descriptions. For each corresponding candidate subgroup g, we then
determine the corresponding set of transitions and compute its transition count matrix Tg.
By comparing this matrix to a reference matrix TD derived from the entire data D, we
can then calculate a score according to an interestingness measure q (see Section 5.2.2).
In order to detect the subgroups with the highest scores, standard exceptional model
mining search algorithms are utilized to explore the candidate space (see Section 5.2.3).
The automatically found subgroups then should be assessed by human experts (see
Section 5.2.4). In a variation of our approach, we do not use the transition count matrix
of the entire data TD for comparison with the subgroup matrices Tg, but instead employ
a matrix TH that expresses a user-specified hypothesis. This allows for finding subgroups
that specifically match or contradict this hypothesis (see Section 5.2.5).
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Figure 5.1.: Subgroups of sequential behavior. Sequential data with background infor-
mation (a) is initially transformed to a transition dataset with transition model attributes AM
and descriptive attributes AD (b). To discover interesting subgroups, transition matrices for the
entire dataset (c) and for the candidate subgroups, e.g., Gender=f (d) or Weekday=Sat (e), are
computed and compared with each other.
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5.2.1. Data representation

We consider sequences of states and additional background information about them (cf.
Section 3.1). Since we will perform exceptional model mining on a transition level, we
split the given state sequences in order to construct a tabular dataset, in which each
instance corresponds to a single transition (similar to Section 4.2.1). For each instance,
the source and target state represent the values of the model attributes AM from which
the model parameters, i.e., the transition matrix of the Markov chain model, are derived.
Each instance is also associated with a set of describing attributes AD based on the given
background information.
Figure 5.1 (a-b) illustrates such a preparation process for a simple example. It shows

sequences of states (e.g., certain locations) that users have visited and some background
knowledge, i.e., some user information and the time of each visit (Figure 5.1a). This
information is integrated in a single data table (Figure 5.1b). It contains two columns
for the transition model attributes AM , i.e., for the source and the target state of each
transition. Additional describing attributes AD capture more information on these
transitions. This includes information specific to a single transition such as the departure
time at the source state but also information on the whole sequence that is projected to all
of its transitions, e.g., user data or the sequence length. Example subgroup descriptions
that can be expressed based on these attributes are "all transitions by female users", "all
transitions on Saturdays", or combinations such as "all transitions between 13:00h and
14:00h from users older than 30 years that visited at least three locations". As different
types of information can be considered for the construction of the descriptive attributes,
the approach is very flexible.

5.2.2. Interestingness measure

We aim to find subgroups that are interesting with regard to their transition models. For
quantifying interestingness, we employ an interestingness measure q that assigns a score
to each candidate subgroup. The score is based on a comparison between the transition
count matrix of the subgroup Tg and a reference transition count matrix TD that is
derived from the overall dataset. In short, the interestingness measure that we propose
expresses how unusual the distance between the transition matrix of a subgroup and the
reference matrix is in comparison to transition matrices of random samples from the
overall dataset. For that purpose, we first define a distance measure on transition matrices.
Then, we show how this distance can be compared against transition matrices built from
random dataset samples. We describe those two steps in detail before discussing more
specific issues.

Distance measure and weighting. First, we compute the reference transition count
matrix TD = (di,j) for the overall dataset D as exemplified in Figure 5.1c. To evaluate
a subgroup g, all instances in the tabular dataset that match its subgroup description
are identified and a transition count matrix Tg = (gi,j) is determined accordingly (see,
e.g., Figure 5.1d and Figure 5.1e). Then, a distance measure is employed to measure
the difference of transition probabilities in these matrices. After normalizing both
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matrices TD and Tg by row (yielding transition probability matrices θD = (di,j/
∑
j di,j)

and θg = (gi,j/
∑
j gi,j), cf., Section 3.2), each row i represents a conditional categorical

probability distribution for the next state given state si. In literature, several methods
have been proposed to compare such distributions. Here, we focus on the total variation
distance δtv, also called statistical distance or (excluding the constant factor) Manhattan
distance. For one row, this is computed as the sum of absolute differences between the
normalized row entries, i.e., between transition probabilities:

δtv(g,D, i) =
1

2

∑
j

∣∣∣∣∣ gi,j∑
j gi,j

− di,j∑
j di,j

∣∣∣∣∣ (5.1)

We then aggregate this value over all states (matrix rows). Since in our setting differences
in states with many observations in the subgroup should be more important than those
with less observations, we weight the rows with the number of transitions wi =

∑
j gi,j

from the corresponding source state si in the subgroup:

ωtv(g,D) =
∑
i

wi ·∑
j

∣∣∣∣∣ gi,j∑
j gi,j

− di,j∑
j di,j

∣∣∣∣∣
 (5.2)

The factor 1
2 can be omitted as it is constant across all subgroups. States that do not

occur in a subgroup are weighted with 0 and can be ignored in the computation even if
transition probabilities are formally not defined in this case.

As an example, consider the transition matrix for the entire example dataset (Figure 5.1c)
and the one for the subgroup Gender = f (Figure 5.1d). The weighted total variation for
this subgroup is computed as follows: ωtv(Gender = f,D) = 2 · (|02 −

0
4 |+ |

2
2 −

2
4 |+ |

0
2 −

2
4 |) + 0 ·NA + 1 · (|11 −

2
4 |+ |

0
1 −

2
4 |+ |

0
1 −

0
4 |) = 3.

Of course, there are also alternatives to the total variation distance measure that we can
use, e.g., the Kullback-Leibler divergence δkl(g,D, i) =

∑
j gi,j · log

gi,j
di,j

or the Hellinger
distance δhell(g,D, i) = 1√

2

√∑
j(
√
gi,j −

√
di,j)2. However, for SubTrails, we focus on the

weighted total variation as it naturally extends existing approaches for interestingness
measures from classical pattern mining: it can be considered as an extension of the
multi-class weighted relative accuracy measure for multi-class subgroup discovery [2].
Additionally, it can also be interpreted as a special case of belief update in a Bayesian
approach as it has been proposed by Silberschatz and Tuzhilin [449] for traditional pattern
mining. We provide a proof for this in Appendix D. Despite this focus, we also conducted
a large set of experiments with all three distance measures in parallel with overall very
similar results.
Comparison with random samples. The measure ωtv describes a weighted distance
between transition matrices. Yet, it is heavily influenced by the number of transitions
covered by a subgroup. For example, small subgroups might be over-penalized by small
weighting factors wi, while very large subgroups can be expected to reflect the distribution
of the overall dataset more precisely. Thus, using ωtv directly as an interestingness
measure does not consistently allow for identifying subgroups that actually influence
transition behavior in presence of noise attributes, cf. Section 5.3.2.
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To account for these effects, we propose a sampling-based normalization procedure.
First, we compute the weighted distance ωtv(g,D) of the subgroup g to the reference
matrix as described before. Then, we draw a set of r random sample transition datasets
R = {R1, . . . , Rr}, Ri ⊂ D from the overall dataset D without replacement1, each
containing as many transitions as the evaluated subgroup g. Now, we compute the
weighted distances ωtv(Ri) for each of these samples, and build a distribution of false
discoveries (cf. Duivesteijn and Knobbe [151]) from the obtained scores. In particular, we
compute the mean value µ(ωtv(R1, D), . . . , ωtv(Rr, D)) and the sample standard deviation
σ(ωtv(R1, D), . . . , ωtv(Rr, D)) for the distances of the random samples. A subgroup is
considered as interesting if the distance of the subgroup strongly deviates from the
distances of the random samples. We quantify this by a (marginally adapted) z-score,
which we will use as the interestingness measure q in our approach:

qtv(g,D) =
ωtv(g,D)− µ(ωtv(R1, D), . . . , ωtv(Rr, D))

σ(ωtv(R1, D), . . . , ωtv(Rr, D)) + ε
, (5.3)

with ε being a very small constant to avoid divisions by zero. Thus, qtv(g,D) quantifies
how unusual the difference of the transition matrix of the subgroup g and the reference
matrix is compared to a random set of transitions drawn from the overall data that contains
the same number of transitions.
Stratification of samples. When drawing random samples equally across all states,
high scores qtv can exclusively be caused by a peculiar distribution of source states in a
subgroup. However, this is not desirable when studying transition behavior. Consider, e.g.,
a dataset D, where transitions for all but one source state (matrix rows) are deterministic
(the transition probability is 1 for a single target state), and all source states have the same
number of observed transitions. Then, random transition samples Ri will be drawn mostly
from the deterministic states and thus, will consistently have very small weighted distances
ωtv(Ri, D). Now, if any subgroup g only contains transitions from the non-deterministic
source state, a random deviation from the underlying transition probabilities is likely. Yet,
even if this deviation and thus the distance ωtv(g,D) is small on an absolute scale, this
distance would still be higher than the ones of the random samples. As a consequence, g
appears as an exceptional subgroup with respect to its transition probabilities, even if
only the distribution of source states differs.

To address this issue, we adapt our sampling procedure: we do not use simple random
sampling, but instead apply stratified sampling w.r.t. the source states of the transitions.
Thus, we draw the random samples R1, . . . , Rr in such a way that for each source state
in the data, each random sample contains exactly as many transitions as the evaluated
subgroup. Note, that we do not stratify with respect to the target states since a different
distribution of these states signals different transition behavior.
Significance. To ensure that our findings are not only caused by random fluctuations
in the data, the z-score qtv which we employ as our interestingness score can be used
as a test statistic for a z-test on statistical significance. Yet, this test requires a normal
1The rationale for using sampling without replacement is that the subgroup itself also cannot contain
multiple instances of the same transition.
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distribution of the weighted distances ωtv(Ri, D) obtained from the samples. Although
in many practical situations the distribution of the sampled distances is approximately
normally distributed, this does not necessarily hold in all cases. We thus propose a
two-step approach to assess statistical significance of the results. First, we use a normality
test such as the Shapiro-Wilk-Test [444] on the set of distance scores obtained for the
sample set R. If the test does not reject the assumption of normality, a p-value can
be directly computed from the z-score. If normality is rejected, a substantially larger
set of random samples can be drawn to compute the empirical p-value of a specific
subgroup [204], i.e., the fraction of samples that show a more extreme distance score than
the subgroup. Although this is computationally too expensive to perform for every single
candidate subgroup, it can be used for confirming significance for the most interesting
subgroups in the result set.
For both methods one must consider the multiple comparison problem [243]: if many

different subgroups are investigated (as it is usually done in pattern mining), then some
candidates will pass standard significance tests with unadapted significance values by
pure chance. Therefore an appropriate correction such as Bonferroni correction [154] or
layered critical values [514] must be applied.
Estimate the effect of limited sample numbers. Determining the interestingness
score qtv(g,D) requires to choose a number of random samples r. While fewer samples
allow faster computation, results might get affected by random outliers in drawn samples.
To estimate the potential error in the score computation caused by the limited number of
samples, we employ a bootstrapping approach [159]: we perform additional sampling on
the weighted distances of the original samples S = {ωtv(R1, D), . . . , ωtv(Rr, D)}. From
this set, we repeatedly draw (e.g., 10, 000 times) “bootstrap replications”, i.e., we draw r
distance values by sampling with replacement from S and compute the subgroup score
qtv for each replication. The standard deviation of the replication scores provides an
approximation of the standard error compared to an infinitely large number of samples,
cf. [160]. In other words, we estimate how precise we compute the interestingness score qtv
with the chosen value of r compared to an infinite number of samples. If the calculated
standard error is high compared to the subgroup score, re-computation with a higher
number of samples is recommended.

5.2.3. Subgroup search

To detect interesting subgroups, we enumerate all candidate subgroups in the search space
in order to find the ones with the highest scores. For this task, a large variety of mining
algorithms has been proposed in the pattern mining literature featuring exhaustive as
well as heuristic search strategies, e.g., depth-first search [282], best-first search [515,
569], or beam-search [301, 493]. For this study, we do not focus on efficient algorithms
for exceptional model mining, but apply a depth-first mining algorithm as a standard
solution.

Candidate evaluation in our approach is computationally slightly more expensive than
for traditional subgroup discovery. That is, the runtime complexity for determining the
score of a single subgroup in our implementation is O(r · (N + S2)) for a dataset with N
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transitions, S different states, and a user chosen parameter of r samples: selecting the
set of instances from a subgroup as well as drawing a stratified sample requires O(N)
operations per subgroup and sample. The transition matrices for each of these transition
sets can also be built in linear time. The weighted distance for each of the r samples and
the subgroup can then be determined in O(S2) as a constant number of operations is
required for each of the S2 matrix cells.
A typical problem in pattern mining is redundancy, i.e., the result set often contains

several similar subgroups. For example, if the subgroup male induces an exceptional
transition model and thus achieves a high score, then also the subgroup males older than
18 can be expected to feature a similarly unusual model and receive a high score—even
if age does not influence transition behavior at all. A simple, but effective approach to
reduce redundancy in the result set is to adapt a minimum improvement constraint [39]
as a filter criterion. To that end, we remove a subgroup from the result set if the result
also contains a generalization, i.e., a subgroup described by a subset of conditions, with a
similar (e.g., less than 10% difference) or a higher score.

5.2.4. Subgroup assessment

Automatic discovery algorithms with the proposed interestingness measure can detect
subgroups with exceptional transition models. Yet, to interpret the results, manual
inspection and assessment of the top findings is crucial as this allows users to identify
in what aspects the found "interesting" subgroups differ from the overall data. For that
purpose, a comparison between the subgroup transition matrix and the reference matrix
is required. Yet, manual comparison can be difficult for large matrices (state spaces).
Therefore, we recommend to assess subgroups with summarizing key statistics, such as
the number of transitions in a subgroup, the weighted distance ωtv between subgroup and
reference transition matrices, the unweighted raw distance ∆tv =

∑
i δtv(g,D, i), or the

distribution of source and target states. Additionally, exemplification, e.g., by displaying
representative sequences, and visualizations are helpful tools for subgroup inspection. See
Sections 7.4.2 and 11.3 for two visualiation examples in the context of music listening
behavior and geo-spatial navigation, respectively.

5.2.5. User-defined hypotheses

In addition to comparing subgroups to the overall dataset, our approach can also detect
subgroups that specifically contradict or match a user-defined hypothesis. Following
the concepts of Singer et al. [453], we can express such a hypothesis as a belief matrix
TH = (hi,j), where higher values hi,j indicate a stronger belief in transitions from state si
to state sj . An example of a hypothesis considering the example dataset of Figure 5.1
could be stated as:

(
0 1 0
1 1 1
1 1 1

)
. This hypothesis formalizes a belief that users from state A

(first row) will always go to state B, and users from the states B and C will proceed to
any of the three states with equal probability.2

2Note that it is equivalent to formulate a transition count matrix TH = (hi,j) or a transition probability
matrix θH = (hi,j/∑j hi,j) because the weighted total variation ωtv (cf., Section 5.2.2) normalizes the
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Now, given a belief matrix TH of a hypothesis, the interestingness score of a subgroup
is computed analogously to the original case, but instead of using the transition matrix
derived from the overall dataset TD as reference, we use the belief matrix TH of the
hypothesis for the computation of the weighted distance ωtv. A subgroup g (exceptionally)
contradicts the hypothesis, if its transition matrix Tg has a significantly larger distance
to the hypothesis matrix TH than the stratified random samples of the dataset. To
find subgroups that match a hypothesis specifically well instead of contradicting it, the
inverted interestingness measure −qtv(g,D) can be used instead.

5.3. Experiments

Here, we demonstrate the potential of our approach with synthetic data. For empirical data
illustrating possible application scenarios and findings, please see Sections 7.4.2 and 11.3.
Using the synthetic data, we show that our approach is able to recover (combinations
of) conditions that determine the transition probabilities in presence of noise attributes.
For computing the interestingness measure, we used r = 1, 000 random samples. Our
implementation (an extension of the VIKAMINE data mining environment [24]) and the
synthetic datasets are publicly available.3

5.3.1. Random transition matrices

We start with a synthetic dataset directly generated from two first-order Markov chain
transition matrices each representing a navigational sub-process. Transitions from both
matrices combined will make up the overall observed behavior. We aim to discover
subgroups with solely transitions from one or the other, pinpointing the corresponding
navigational sub-processes.
Experimental setup. We created two 5 × 5 matrices of transition probabilities by
inserting uniformly distributed random values in each cell and normalizing the matrices
row-wise. Then, for each generated instance, one of the matrices was chosen based on two
attributes, a ternary attribute A and a binary attribute B. If both attributes take their first
values, i.e., A = A1 and B = B1 , then transitions were generated from the first matrix,
otherwise from the second matrix. For each combination of values, we generated 10, 000
transitions, resulting in 60,000 transitions overall. For each transition, we additionally
generated random values for 20 binary noise attributes, each with an individual random
probability for the value true. We employed our approach with a maximum search depth
of two selectors to find subgroups with different transition models compared to the overall
dataset. Our approach should then detect the subgroup A = A1 ∧ B = B1 as the most
relevant one.
Results. The top-5 result subgroups are displayed in Table 5.1. It shows the number
of covered transitions (instances), the score of the interestingness measure qtv including

entries of the reference matrix TD (i.e., TH for this hypothesis based variation) and the weights wi
only depend on the values of the transition count matrix Tg of the subgroup g.

3http://florian.lemmerich.net/paper/subtrails.html
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Table 5.1.: Top subgroups for random transition matrix data. For each subgroup, we
show the number of instances covered by this subgroup, the interestingness score qtv, the weighted
total variation ωtv, and the unweighted total variation ∆tv.

Description # Inst. qtv (score) ωtv ∆tv

A = A1 ∧ B = B1 10,000 113.01 ± 2.74 5,783 1.54
A = A1 20,000 67.23 ± 1.60 4,634 0.60
B = B1 30,000 45.52 ± 0.94 3,480 0.33
B = B2 30,000 44.69 ± 1.08 3,480 0.51
A = A3 20,000 32.05 ± 0.77 2,378 0.53

the standard error of its computation estimated by bootstrapping (±), the weighted
total variation ωtv between the subgroup and the reference transition matrix, and its
unweighted counterpart ∆tv. The result tables for the following experiments will be
structured analogously.
We observe that our approach successfully recovered the subgroup of transitions that

were generated from a different probability matrix, i.e., the subgroup (A = A1 ∧ B = B1 ).
This subgroup receives the best score qtv by a wide margin. The subgroup with the next
highest score (A = A1 ) is a generalization of this subgroup. Since it contains transitions
generated from both matrices in a different mixture, it also features indeed an unusual
transition model compared to the entire dataset. In the same way, the next subgroups all
feature the attributes A and B that actually influence the transition behavior, and none
of the noise attributes. These top subgroups all pass a Bonferroni-adjusted statistical
significance test as described in Section 5.2.2 with an empirical p-value of p � 10−10,
while all subgroups containing only noise attributes (not among the shown top subgroups)
do not pass such a test with a critical value of α = 0.05.

5.3.2. Random walker

Our second demonstration example features a set of transitions generated by a random
walker in a network of colored nodes.

Experimental setup. First, we generated a scale-free network consisting of 1,000 nodes
(states) with a Barabási-Albert model [35]. That is, starting with a small clique of
nodes, new nodes with degree 10 were inserted to the graph iteratively using preferential
attachment. Then, we assigned one of ten colors randomly to each node. On this network,
we generated 200, 000 sequences of random walks with five transitions each, resulting in
1, 000, 000 transitions overall. For each sequence, we randomly assigned a walker type.
With a probability of 0.8, the walk was purely random, i.e., given the current node of the
walker, the next node was chosen with uniform probability among the neighbouring nodes.
Otherwise, the walk was homophile, i.e., transitions to nodes of the same color were twice
as likely. For each transition, the resulting dataset contains the source node, the target
node, the type of the respective walker (random or homophile), and additionally the
values for 20 binary noise attributes, which were assigned with an individual random
probability each.
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Table 5.2.: Top subgroups for random walker data. For each subgroup, we show the
number of instances covered by this subgroup, the interestingness score qtv, the weighted total
variation ωtv, and the unweighted total variation ∆tv.

(a) Comparison to the overall dataset.
Description # Inst. qtv (score) ωtv ∆tv

Type = Homophile 200,915 35.67 ± 0.78 51,929 125.96
Type = Random 799,085 34.34 ± 0.80 51,929 31.73
Noise9 = False 681,835 2.25 ± 0.06 51,358 36.27
Noise9 = True 318,165 2.23 ± 0.06 51,358 77.94
Noise2 = False 18,875 1.80 ± 0.05 14,844 394.51

(b) Comparison to the homophile hypothesis, contradicting.
Description # Inst. qtv (score) ωtv ∆tv

Type = Random 799,085 26.88± 0.57 1,554,130 981.38
Noise4 = True 519,130 2.28 ± 0.06 1,008,912 981.25
Noise2 = False 18,875 2.25 ± 0.06 37,057 987.49
Noise1 = True 469,290 2.00 ± 0.05 912,032 981.26
Noise19 = True 342,765 1.93 ± 0.05 666,229 981.28

(c) Comparison to the homophile hypothesis, matching.
Description # Inst. qtv (score) ωtv ∆tv

Type = Homophile 200,915 12.10 ± 0.27 389,841 981.04
Noise4 = False 480,870 2.69 ± 0.07 934,190 981.20
Noise19 = False 657,235 2.27 ± 0.06 1,276,868 981.20
Noise1 = False 530,710 1.99 ± 0.05 1,031,101 981.20
Noise0 = True 523,410 1.74 ± 0.05 1,016,899 981.21

With this data, we performed three experiments. In the first, we searched for subgroups
with different transition models compared to the entire data. In the second and third
experiment, we explored the option of finding subgroups that contradict — respectively
match — a hypothesis. For that purpose, we elicited a hypothesis matrix TH = (hi,j)
that expresses belief in walkers being homophile, i.e., transitions between nodes of the
same color are more likely. Towards that end, we set a matrix value hi,j to 1 if i and j
belong to the same color and hi,j = 0 otherwise. Edges of the underlying network were
ignored for the hypothesis generation.

Results. Table 5.2 presents the results for the three experiments. As intended, exceptional
model mining identified the subgroups that influence the transition behavior as the top
subgroups for all three tasks. In the first experiment (see Table 5.3a), both subgroups
described by the Type attribute are top-ranked. For the second experiment (see Table 5.3b),
the subgroup Type=Random receives the highest score. By construction, this subgroup
should indeed expose the least homophile behavior since any subgroup described by noise
attributes contains transitions from homophile as well as non-homophile walkers. Its
complement subgroup Type=Homophile does not contradict our hypothesis and thus
does not appear in the top subgroups. By contrast and as expected, the subgroup
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Type=Homophile receives the highest score in the third experiment that searches for
subgroups matching the homophile hypothesis, while Type=Random is not returned as a
top result, cf. Table 5.3c. For all three experiments, the statistical significance of the top
subgroups described by the Type attribute was decisive (p� 10−10), while the top findings
for the noise attributes were not significant at the Bonferroni-adjusted level α = 0.05 .

In additional experiments (no result tables shown), we employed the weighted distance
ωtv directly as an interestingness measure. By doing so, we were not able to recover the
relevant subgroups as they were dominated by several random noise subgroups. This
shows the necessity of a comparison with random samples.

We also experimented extensively with different parameterizations (e.g., different walker
type probabilities or different numbers of node colors). Consistently, we were able to
identify the two subgroups Type=Random and Type=Homophile as the top subgroups.

5.4. Related work

Mining patterns in sequential data has a long history in data mining. However, large
parts of research have been dedicated to the tasks of finding frequent sub-sequences
efficiently, see for example [8, 366, 551]. Also see Section 3.4.2.2 for more information.
Other popular settings are sequence classification [315, 540] and sequence labeling [299].
However, unlike SubTrails, these methods do not aim to detect subgroups with unusual
transition behavior.
Our solution is based on exceptional model mining as introduced in Section 3.4. This

data mining task aims at finding descriptions of data subsets that show an unusual
statistical distribution of arbitrary target concepts. While many model classes have been
studied (e.g., classification [307] and regression models [150], or Bayesian networks [152]).
No models featuring sequential data have been explored for exceptional model mining so
far. Also, see Section 3.4.2 for a general overview of applications of subgroup discovery
and EMM.

We presented an approach to detect subgroups with exceptional transition models, i.e.,
subgroups that show unusual distributions of the target states in first-order Markov chain
models. The results from our approach may correlate with subgroups that could also be
obtained by multi-class subgroup discovery [2] that investigates the distribution of target
states. However, such a static analysis aims to achieve a different goal than our analysis of
behavior dynamics and will not capture all subgroups with exceptional transition models.
For example, in the random walker synthetic dataset (see Section 5.3.2) the distribution of
target states is approximately uniform for all subgroups by construction, also for the ones
that influence the transition behavior. As a consequence and in contrast to our method,
a static analysis could not recover the exceptional subgroups. Furthermore, the task of
finding subgroups that match or contradict a hypothesis of dynamic state transitions
(e.g., as demonstrated in the Flickr example, see Section 7.4.2) cannot be formulated as a
more traditional subgroup discovery task.
Our interestingness measure is inspired by previous methods. The weighted distance

measure can be considered as an adaptation of the multi-class weighted relative accuracy [2]
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or as a special case of the Bayesian belief update [449]. The randomization/sampling pro-
cesses to capture significant differences of subgroups also builds upon previous approaches.
In that direction, Gionis et al. [204] utilized swap randomization to construct alternative
datasets in order to ensure the statistical significance of data mining results. For subgroup
discovery, analyzing a distribution of false discoveries obtained by randomization was
proposed to assess subgroups and interestingness measures [151]. We extended these
methods to exceptional model mining with complex targets and used it directly in the
interestingness measure for the subgroup search.
For modeling sequential processes, Markov chains were used in various forms and in

a wide variety of applications ranging from user navigation [402, 454] to economical
settings and meteorological data [186] (also see Section 3.2.2). The mixed Markov
model extension [405] of classical Markov chains features separate transition matrices
for “segments” of users, but these segments are not interpretable, i.e., have no explicit
descriptions. The work maybe closest to ours is [426], where the authors detected outliers of
user sessions with respect to their probability in a Markov-chain model; outliers were then
manually categorized into several interpretable groups. By contrast, our solution allows
to identify descriptions of groups that show unusual transition behavior automatically
from large sets of candidate subgroups.

Also, compared to HypTrails [453] (Section 3.3.2) and MixedTrails (Chapter 4) which
allow to compare hypotheses about Markov chain models, SubTrails — as an exceptional
model mining approach — not only enables us to find interpretable sub-processes in
human navigation behavior but also let’s us identify (sets of) conditions under which a
given hypothesis is matched or contradicted.

5.5. Conclusion

With SubTrails we proposed a pattern mining approach to exploring heterogeneous
aspects of human navigation behavior, supporting the process of hypotheses conception
(cf. Section 1.2.2). In particular, we introduced first-order Markov chains as a novel
model class for exceptional model mining in sequence data with background knowledge.
This enables a novel kind of analysis: it allows to detect interpretable subgroups that
exhibit exceptional transition behavior, i.e., induce different transition models compared
to the entire dataset. In addition, we presented a variation of the standard task that
compares subgroups against user-defined hypotheses, enabling a detailed analysis of given
hypotheses about transition behavior. We illustrated the potential of our approach by
applying it to several, advanced synthetic scenarios, i.e., SubTrails successfully recovered
exceptional transitions from artificial noise attributes. For insights gained by applying
SubTrails to real-world data please see Sections 7.4.2 and 11.3. Overall, SubTrails presents
a novel approach to gain an understanding of the underlying heterogeneous processes of
human navigation, and will ultimately enable to formulate and compare more intricate
hypotheses by incorporating the corresponding heterogeneous aspects. Thus, it addresses
one of the major challenges of analyzing heterogeneous navigation behavior as outlined
in Section 1.2, namely hypothesis conception. An example of this process can be seen in
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Chapter 7, where subgroups discovered by SubTrails are used as indicators to formulate
new heterogeneous hypotheses about photowalking behavior.

In the future, we aim to improve and extend our approach in several directions. First,
the proposed interestingness measure is currently based on individual transitions. As a
consequence, a few very long sequences (e.g., of very active users) can strongly influence
the results. To avoid dominance of such sequences, weighting of the transition instances
according to the overall activity could be applied in future extensions [cf. 22]. In addition,
we intend to investigate ways of speeding-up the mining process, e.g., by optimistic
estimate pruning [532] or by using advanced data structures [310], and aim to apply
sophisticated options to reduce redundancy, cf. [311, 318, 319]. Finally, we would like
to generalize the proposed model class to Markov chains of higher order or even more
advanced sequential models that potentially also take indirect state transitions into
account.
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Besides our methodological contributions in Chapters 4 and 5, we have developed several
tools to support the process of understanding of human navigation behavior. This ranges
from introducing an efficient implementation of relevant algorithms to developing several
data collection, analysis, and visualization systems. In particular, we present three analy-
sis tools: SparkTrails, VizTrails, and the EveryAware platform. SparkTrails (Section 6.1)
is a distributed implementation of the HypTrails approach [453] based on the MapRe-
duce paradigm [137] for comparing hypotheses about human navigation behavior (cf.,
Section 1.2.1). It allows to efficiently handle real-world scenarios with large state spaces
as often encountered when studying human navigation behavior. VizTrails (Section 6.2)
supports the process of hypothesis conception (cf. Section 1.2.2) by providing visualiza-
tions of geo-spatial navigation data. It facilitates deeper insights into the corresponding
trajectories by enabling interactive exploration of aggregated statistics and providing
geo-spatial context. The EveryAware system (Section 6.3) takes a more holistic approach
and provides a platform for collecting mobile sensor data in a participatory setting. That
is, it enables user-driven campaigns by collecting, analyzing and visualizing data such as
air quality or noise pollution in a geo-spatial context while explicitly supporting mobile,
personal devices, and subjective information, such as emotions or perceptions. Similar to
VizTrails the explorative nature of EveryAware aids the processes of hypothesis conception
(cf. Section 1.2.2). In the following, we present each of these systems in detail.

6.1. SparkTrails: A MapReduce implementation of
HypTrails for comparing hypotheses about human trails

This section presents a distributed and parallel implementation of HypTrails (cf. Sec-
tion 3.3.2) which enables the comparison of hypotheses about the underlying processes of
human navigation on large scale datasets and state spaces (cf., Section 1.2.1). Many of
our case studies in Part III rely on this approach. The content of this section follows our
previously published work on SparkTrails [42].

6.1.1. Introduction

As reviewed in Section 3.3.2, HypTrails [453] (cf., Section 3.3.2) is a Bayesian approach
for formulating and comparing hypotheses about the underlying processes of human
navigation behavior. However, especially recently, real-world datasets of geo-spatial as
well as online navigation are often very large. This requires approaches for analyzing such
data to operate efficiently. While a standard implementation of HypTrails is available, it
exposes performance issues when working with large-scale data.
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To address this, we take advantage of the structural properties of HypTrails and
propose a fast, scalable, and distributed implementation, called SparkTrails, based on the
MapReduce paradigm [137]. We implement our method on Apache Spark and evaluate
our approach on several large-scale datasets observing greatly improved performance and
the ability to scale freely. The implementation is publicly available and open source.1

In the following, we first examine the computational structure of HypTrails (Sec-
tion 6.1.2) and exploit our findings in the subsequent section in order to derive the
algorithmic details of our SparkTrails approach (Section 6.1.3). Afterwards, we evaluate
SparkTrails on several large-scale datasets in Section 6.1.4, and conclude in Section 6.1.5.
With regard to related work, we note that HypTrails [453] is a relatively novel method,
and thus, no other studies on its performance or corresponding parallelized or distributed
implementations exist so far.

6.1.2. Computational structure of HypTrails

As detailed in Section 3.3.2, HypTrails is a Bayesian approach for formulating and
comparing a set of hypotheses about the underlying processes of human navigation
behavior based on a set of observations. In this context, observations are represented
as a path dataset D which is converted to a transition count matrix T = (ni,j) where
ni,j corresponds to the transition count from state i to state j (cf. Definitions 1 and 3).
Given this data, hypotheses are compared based on their marginal likelihood P (D|H). In
particular, hypotheses are formulated as stochastic matrices φ = (φi,j) with each entry
representing the transition probability from one state to the other. These stochastic
matrices are transformed into parameters of a Dirichlet distribution by employing a
concentration factor κ (cf. Section 3.3.2.3). This results in a parameter matrix α = (αi,j).
Now, let Γ denote the gamma function, then the overall formula to calculate the marginal
likelihood Pr(D|H) of a hypothesis H with a given parameter matrix α is:2

Pr(D|H) =
∏
i

Γ(
∑

j αi,j)∏
j Γ(αi,j)

∏
j Γ(ni,j + αi,j)

Γ(
∑

j(ni,j + αi,j))︸ ︷︷ ︸
evidence Pri(D|H) for an individual state i

(6.1)

This formula has to be calculated several times for each hypothesis depending on the
number of concentration factors used to construct the evidence curves HypTrails uses for
comparing hypotheses (cf. Figure 3.6 in Section 3.3.2.1). Note that the number of terms
in Equation (6.1) grows quadratically with an increasing number of states. Thus, real
world examples with large state spaces can — in addition to memory issues — lead to
very long runtimes.

1http://dmir.org/sparktrails
2See Section 3.3.2.2 for an explanation on why α can encode hypotheses.
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Figure 6.1.: SparkTrails concept. A schematic distributed calculation of HypTrails for three
states. ci are computational nodes where the rows of the observation matrix T and the elicited
hypothesis matrix α are stored in a distributed fashion. After joining these two matrices by
row, each computation node calculates the evidence for one (or more) state. The resulting state
evidences are then merged into the overall evidence.

6.1.3. Distributed implementation

To be able to cope with large state spaces, for HypTrails, we implement SparkTrails where
we employ a MapReduce approach in order to distribute the workload as well as the
memory requirements of the HypTrails method across several computational nodes. In
this section we introduce the general idea and discuss several optimizations.

Main idea. The overall evidence calculated by HypTrails corresponds to the product
of the evidences of each individual state (cf. Equation 6.1). Thus, we calculate these
state evidences individually in a distributed fashion and merge the results into the overall
evidence.3 The process, as illustrated in Figure 6.1, can be embedded into the MapReduce
paradigm as indicated by the distributed join as well as the map and reduce steps.

Row Sparsity. Observations are often sparse resulting in many states with no outgoing
transitions. For these states all ni,j in Pri(D|H) are 0. Hence the components of
the nominator and the denominator cancel each other out yielding an evidence of 1.
Consequently these states can be left out of the distributed join (for T and α). This
greatly reduces the amount of data being shuffled between nodes.

Column Sparsity. We further exploit the observation sparsity by working with sparse
row vectors. For each state evidence calculation Pri(D|H), this lets us reduce the number
of Γ values to calculate by two times the number of states transitions ni,j which have not
been observed. This is because Γ(ni,j + αi,j) and Γ(αi,j) cancel each other out if ni,j = 0.

Belief. Since HypTrails calculates evidence values for several concentration factors κ, we
would need to run it for each corresponding parameter matrix α separately. However,
we can distribute the transition probability matrix instead of the parameter matrix and

3To avoid underflow, we actually calculate the logarithm of the marginal likelihood (evidence) so we can
sum values instead of multiplying them.
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Table 6.1.: Runtimes of SparkTrails. The data is based on real-worl data from Wikipedia
(wself, wnw) and Flickr (f) as well as several synthetic examples (s1, s2, r). In all cases we observe
a strongly reduced runtime for the distributed algorithm (spark). Also, runtimes scale almost
linearly when increasing the number of computation nodes (e).

wself wnw f s1 s2 r
Python 9.0m 20.1m 1.4m - - -
Spark (e = 4) 0.4m 1.7m 3.4m 2.5h 9.7h 18.3h
Spark (e = 8) 0.2m 0.9m 1.7m 1.2h 4.8h 8.9h
Spark (e = 16) 0.1m 0.7m 1.2m 0.7h 2.7h 5.2h

move the elicitation process into the state evidence calculation.4 This results in evidence
vectors, one entry for each κ, avoiding expensive distributed joins.
More. Our implementation features additional optimizations, such as exploiting the
row sparsity property mentioned above for hypotheses as well, taking advantage of
their structural properties to avoid data shuffling, speeding up the distributed join via
pre-sorting or even consider coordinate-wise instead of row-wise calculations in case of
(unlikely) memory issues. See the code base for details.5

6.1.4. Experiments

For evaluation we calculate the evidence for 10 different concentration factors κ on
synthetic as well as real-world data including Wikipedia navigation [537] and photo trails
in Los Angeles (cf., Chapter 7). We test our distributed implementation based on Apache
Spark and an optimized version of the original Python implementation. Table 6.1 lists
the results for the multiplication based hypothesis elicitation variant (cf. Sections 3.3.2
and 6.1.2).

SparkTrails runs on a YARN cluster with 6 worker nodes à 6 physical Intel Xeon cores,
128GB RAM and 5 executors. The Python code is not parallelized and uses a 2.1GHz
AMD Opteron CPU and 256GB RAM. For Python, the larger state spaces did not fit
into memory accounting for missing runtimes, and we have not included the time to load
data into memory (∼20 minutes for wnw). For SparkTrails this time is included.

For Wikipedia, observations are transitions between articles from the clickstream dataset
(Feb. 2015) by Wulczyn and Taraborelli [537]. The hypothesis wself is based on the
observed transitions themselves representing the optimal hypothesis. The alternative
hypothesis wnw is based on the link network6 representing the hypothesis that people
choose from available links uniformly. While the overall state count is larger than 45
million, the observations and the network are very sparse resulting in small runtimes. For
photo trails (f), we consider transitions between geo-spatial grid-cells extracted from
photo sequences on Flickr; the hypothesis is based on distance. The small runtime for
Python can be explained by a small state count (∼84k), sparse observations and a dense
4If we choose an elicitation process which can be applied for each state independently. See Section 3.3.2.3
for more details on elicitation approaches.

5http://dmir.org/sparktrails, accessed: December 2017
6Based on an XML dump of the English Wikipedia from the 04.03.2015.
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hypothesis. However, when considering the time to load data into memory (∼13m),
SparkTrails is still a lot faster. To test our approach on dense data as well, we created a
full transition matrix and used it as both, observations and hypothesis, with 93k (s1) and
186k (s2) states. Finally, we test on a randomly sampled matrix with 0.01% of all entries
being set for 26 million states (r).
Additional information on the datasets as well as the different implementations can

be found online.7 Overall, we observe that our approach, SparkTrails, can handle larger
datasets, yields dramatically smaller runtimes, and scales well with an increased number
of computational nodes.

6.1.5. Conclusion

We proposed a distributed implementation of HypTrails (see Section 3.3.2). Our ex-
periments showed that this implementation can handle large-scale data efficiently and
outperforms non-distributed methods by a large margin. Furthermore, our approach
scaled almost linearly with the number of computation nodes and thus, can handle very
large observation datasets and hypotheses. In Chapter 7, we use SparkTrails to calculate
the results for our study on human navigation based on Flickr data. Future work may
include efficient methods for creating large hypotheses or adapting our implementation
for possible extensions to HypTrails such as MixedTrails (cf. Chapter 4).

6.2. VizTrails: An information visualization tool for
exploring geographic movement trajectories

In this section, we introduce VizTrails, a tool for visualizing geo-spatial navigation behavior
in the context of various background information. This helps to better understand the
underlying processes and supports the procedure of conceiving hypotheses about human
navigation (cf. Section 1.2.2). The content of this section follows our previously published
work on VizTrails [45].

6.2.1. Introduction

As listed in Section 2.1, many practitioners and researchers have studied human movement
trajectories in cities through a variety of data sources including mobile phone data, GPS
and Wifi tracking, location-based social media platforms, online photo sharing sites, and
others. Our work in Chapter 7 extends this line of research by studying the underlying
processes of a set of trails derived from human navigation behavior in the form of urban
photo trails. To this end, we applied the HypTrails approach [453] (cf., Section 3.3.2)
which allows to formulate and compare different hypotheses about the production of such
trails. However, the process of formulating hypotheses is rather abstract because most
of the time generalized mathematical formulas need to be used to efficiently formulate
transition probabilities for each state combination (cf., Section 7.3).

7http://dmir.org/sparktrails
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To support the process of formulating hypotheses and to mitigate its abstract nature,
we have implemented a visualization tool called VizTrails8, which allows us to better
understand how geo-spatial navigational data (focusing on photo trails) materializes. It
further enables us to gain further insights on how the specific hypotheses we formulate
explain the corresponding paths. VizTrails achieves this by showing aggregated information
for grid cells (or any other spatial discretization, e.g., tracts) on a map featuring interactive
visualization of statistics, such as the number of users passing through cells, the in- and
out-degree from and to other cells, or the cells commonly visited next. Also, among other
features, VizTrails enables overlaying the map with content from arbitrary SPARQL
queries for relating the observed trajectory statistics with geo-spatial context. VizTrails
is designed for minimizing the required pre-processing steps.

Overall, VizTrails facilitates deeper insights into geo-spatial trajectory data by enabling
interactive exploration of aggregated statistics in the context of additional geo-spatial
context. Thus, it supports the process of formulating novel hypotheses about human
navigation behavior (cf., Section 1.2.2). In the following, we present VizTrails including an
overview of its architecture (Section 6.2.2), as well as several of its visualization features
(Section 6.2.3). We follow up with a brief overview on related work in Section 6.2.4, and
give a conclusion on Section 6.2.5.

6.2.2. Architecture

VizTrails is a web application based visualization system. It consists of two independent
layers: the REST-layer for serving statistics on human navigation data and the UI-layer
for visualizing the provided data.

The REST-layer is connected to a database and provides endpoints for accessing data
points, user trajectories, grid cells, cell transitions, and more. It is built to be modular,
i.e., the underlying database is easily exchangeable. Thus, it can not only serve data from
relational databases like MySQL or PostgreSQL, but can also directly access data from
distributed NoSQL databases like HBase or Cassandra. This is especially useful when
large amounts of trajectory data are processed via parallel computation frameworks like
Hadoop or Spark which directly write to such distributed data storage systems.
The UI-layer is browser-based. It pulls the data from the endpoints provided by the

REST-layer and visualizes it via HTML, JavaScript, and corresponding frameworks
like jQuery or OpenLayers. As a primary goal of VizTrails, the UI-layer enables data
exploration in real-time. Since the listing of available grids and transitions is directly
coupled with the REST-layer, new grid and transition types are immediately available in
the user interface. This allows for a smooth workflow from generating and analyzing data
towards visualizing it.

8http://dmir.org/viztrails
9Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org.
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(a) Grid View

(b) Transitions

(c) POIs

Figure 6.2.: VizTrails’ visualization components. In (a) we show the general grid view
visualizing different values for individual grid cells providing a general overview of some global
statistics. In this case, photo counts (e.g., P (C)) in Berlin are depicted. (b) demonstrates how
transitions from or to a cell are visualized when clicking on that particular cell (e.g., P (C2|C1)).
This allows to explore how people move from or to different places. Third, (c) shows how entities
from DBpedia and their respective view counts on Wikipedia are visualized providing trajectories
with spatio-semantic context. These different visualization modes aid in exploring data about
human movement trajectories in an intuitive and explorative way.9
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6.2.3. Visualizations

We visualize geo-spatial trajectory data by discretizing an area defined by a bounding box
into grid cells (or any other spatial discretization, e.g., tracts) as depicted in Figure 6.2a.
Trajectories are then projected onto this grid. This allows us to visualize aggregated
statistics on the set of all trails that contain a location within this grid cell. These
include single cell statistics, cell transitions, and the respective geo-spatial context. In
the following, we describe these visualizations in the same order.

Cell frequencies. For an overview of the general spatial distribution of the recorded
data points, we color each grid cell according to the number of data points in that cell.
The color as well as the value intervals associated with each color can be freely chosen.
In addition to the number of data points in each cell, this visualization can be used to
visualize any other scalar valued statistics depending on the values the discretization
provides (in our case we also provide in- and out-degree for each cell). A dialog allows to
choose from a number of different grids and associated values and updates as new grids
are available in the database. Upon choosing a grid the map automatically pans and
zooms to the appropriate extent.

Markov chain transitions. Now, in order to explore trajectories, the UI allows to
visualize first-order Markov chain transitions. When clicking on a cell, cell colors change
from a coloring based on overall statistics, to colors associated with the count of transitions
starting at a point within the clicked cell. We also show lines for the most probable trails
from (red) or to (blue) that cell. Thus, for example in the Flickr case, it can easily be
judged where people will go from the current cell in order to take their next picture.
Figure 6.2b shows the transitions from the “Brandenburg Gate” in Berlin. Here people
mostly move towards three destinations, namely the “Reichstag” building, the “Potsdamer
Platz” and the “Museum Island”. Note, that this feature not only allows to visualize actual
trajectories, but can also be used to contrast them with hypotheses about transitions as
formulated, e.g., by Becker et al. [44] (also see Chapter 7).

Spatio-semantic context. In [44] (also see Chapter 7), we have found that the processes
resulting in human trajectories are strongly connected with geo-spatial features such
as points of interest and their corresponding popularity in the social and semantic web.
In order to be able to directly correlate trajectories with such features, we provide the
possibility to query and visualize geo-spatial entities from DBpedia 10 via SPARQL 11. In
addition, these entities can be weighted by the view counts of the respective Wikipedia
articles12 (if available), as shown in the example screenshot in Figure 6.2c.

Flickr. Although VizTrails can visualize arbitrary geo-spatial trails, our demonstration
example features urban photo trails from the Flickr platform. As an additional feature
for this dataset, we can also search for particular photo ids or show public photos that
have been taken within a bounding box drawn on the map, cf. Figure 6.2a.

10http://dbpedia.org
11http://www.w3.org/TR/rdf-sparql-query/
12extracted from http://dumps.wikimedia.org/other
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6.2.4. Related work

Geo-spatial visualizations are widely acknowledged as a part of analysis processes in which
we can explore corresponding data, and build hypotheses [320]. In particular, Gahegan
et al. [187] and MacEachren et al. [335] argued that visualizations can be tightly integrated
into the knowledge discovery process for gaining insights into the underlying mechanics
of the observed geo-spatial data. There are many corresponding methods [15, 103, 320,
327]. This includes approaches for general activity patterns [297], traffic data [327], or
individual movement [268]. For temporal patterns, such as human navigation behavior,
spatio-temporal visualizations are of special interest [140, 298]. However, instead of
analyzing overall trajectories, in this thesis, we focus on aggregates of single transitions
(between location or places). Thus, tools that focus on spatial interactions or flows
can help to visualize the corresponding data. Guo et al. [222] and Chua et al. [118]
proposed respective visualization tools. However, the former does not show interactions
embedded in a map thus loosing the geo-spatial context, and the latter visualizes all
interactions between all entities at the same time (represented as arrows or arcs) which
causes cluttered visualizations where entities are dense. With VizTrails we opt for only
showing interactions when a specific entity is selected. This looses information on the
overall distribution of interactions, but allows for clean visualizations. Additionally, we
embed background information into our visualizations, similar to Slingsby et al. [459]
who visualized tags from platforms such as Flickr on maps. In contrast to Slingsby
et al., we add contextual information queried from DBpedia via SPARQL queries and
allow to show images taken by Flickr users for selected areas. While we do not claim to
replace any of the existing tools, we believe that combining the aforementioned features,
VizTrails is well tailored for our application scenario, i.e., gaining insights into geo-spatial
human navigation in order to formulate and explore novel hypotheses about its underlying
processes.

6.2.5. Conclusion

We introduced the interactive visualization tool called VizTrails that allows exploring
human movement and corresponding trails. To this end, we used a general discretization
approach to visualize a number of metrics as well as mutual transitions between areas of
interest. VizTrails also allows to set these trails into geo-spatial context using semantic
web data via SPARQL queries. Thus, it enables interactive exploration and facilitates
deeper insights into spatial trajectory data. In Chapter 7, we use VizTrails to explore
and visualize hypotheses about how people move through urban areas based on geo-
tagged photos from Flickr. Overall, VizTrails supports the process of conceiving and
exploring novel hypotheses as is one of the main challenges addressed by this thesis (cf.,
Section 1.2.2).
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6.3. EveryAware: A platform for collecting, analyzing and
visualizing data for mobile participatory sensing
campaigns

Human navigation behavior can be observed in many different application scenarios. This
also includes users navigating their environment in the context of participatory sensing
campaigns. In this section, we introduce the EveryAware platform which is built for
collecting, analyzing and visualizing data in this context. Its explorative nature aids the
processes of hypothesis conception (cf. Section 1.2.2). In Chapter 8 and Section 11.1,
we study data collected using this platform. For the introduction of EveryAware in the
following sections, we follow our previous published work (cf. Becker et al. [43]).

6.3.1. Introduction

In the context of the Internet of Things, many new applications have been designed
for mobile devices enabling people to record environmental as well as personal data by
making use of cheap, embedded and (specifically) mobile sensors, such as microphones,
cameras, accelerometers, gyroscopes as well as temperature, pressure, air quality, or heart
rate sensors. In combination with GPS receivers this tremendously growing number of
measurement possibilities enables — among other things — to study highly contextual
navigational processes of human behavior as we study in this thesis.
In particular, Cuff et al. suggested that there is a wide range of applications in which

people can be engaged in mobile sensing expecting a rapidly growing field and a multitude
of applications on an urban level [131]. This is in particular true for the field of citizen
science where volunteers contribute for the benefit of human knowledge and science [224].
Methods and techniques of flexibly acquiring and handling this data play a central role in
understanding human behavior and paving the way towards behavioral shifts within large
citizen populations.
Thus, the citizen science movement is especially supported by emerging web based

platforms making it easy to collectively upload content and share data. The data in this
context can be divided into two classes.

1. Objective data, which stems mainly from sensors and includes measurements like
sound intensity or gas concentration.

2. Subjective data, which comprises reactions and perceptions of humans faced with
particular environmental conditions.

Problem setting. While traditional Internet of Things approaches provide powerful
functionalities to support (objective) sensor data, they hardly support the collection
and augmentation with subjective information. However, beside collecting and handling
measurements, data also needs to be understood and interpreted which is not an easy
task. That is, objective data can change its interpretation entirely in different semantic
contexts. For example high noise levels at a rock concert are perceived as enjoyable while
a leaking water-tap can be considered as noise pollution. Therefore, on the way to the
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Internet of Everything, the next step is an Internet of Things and People [492] not only
working on objective data but incorporating people to add impressions, interpretations,
and other subjective context.

Approach and benefits. EveryAware aims at providing a platform that links objective
sensor data (such as air quality or noise pollution measurements) with subjective infor-
mation (such as impressions, interpretations, or perceptions). In particular, we propose a
highly efficient, generic data collection and processing framework featuring a powerful
extension mechanism to allow for semantic data augmentation. With this, we aim to
support data alignment and aggregation methods to create representative statistics and
visualizations, in order to support advanced knowledge discovery algorithms to mine
hidden patterns and relations [247]. Furthermore, EveryAware is built to incorporate
geo-spatial information, thus, it allows to collect data about the highly dynamic behavior
of users navigating their environment in the context of participatory sensing campaigns.
This allows to study human navigation behavior in a novel scenario and a range of
unexplored of contextual information. See Chapter 8 Section 11.1 for examples. The
EveryAware platform is live13 and the source code is available14.

Structure. In the next section (Section 6.3.2), we present the two main parts of the
EveryAware system, the conceptual and the implementation layer. In Section 6.3.3,
we present two reference applications of EveryAware, i.e., WideNoise and AirProbe, as
well as the currently developed module Gears. WideNoise and AirProbe are specialized
applications to collect, explore, and analyze noise pollution and air quality, respectively.
Gears on the other hand, while building on the same underlying architecture, is a module
that aims to provide a generic framework for sensor data collection and visualization. After
introducing these modules, we then critically discuss the current features of EveryAware
(Section 6.3.4) and review existing data collection services in the context of the Internet
of Things in Section 6.3.5. Finally we summarize our work including possible future
directions in Section 6.3.6. Also, see Chapter 8 and Section 11.1 for studies analyzing
human navigation behavior based on data collected using the EveryAware platform.

6.3.2. Architecture

On the conceptual level, the EveryAware platform has been designed to enable users
to collect, visualize, and share personal sensor measurements (mainly focusing on en-
vironmental factors) and at the same time augment the collected data with arbitrary
information explicitly supporting subjective context.

On the technical level, the data processing engine allows for the application of dedicated
data mining and knowledge discovery algorithms in order to fully exploit the synergies of
a central data storage and the wide variety of objective and subjective information. Our
platform was co-developed with the Ubicon framework [20] and extends it to provide the
functionality needed for our architecture.
In the following, we introduce both, the conceptual as well as the technical layer.

13http://cs.everyaware.eu, accessed: August 2017
14http://dmir.org/everyaware-opensource, accessed: August 2017
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Figure 6.3.: Conceptual design of the EveryAware system.

6.3.2.1. Conceptual layer

The conceptual layer defines the basic entities and features of the EveryAware system
revolving around the notion of data points (see Figure 6.3).
Data Points. Since EveryAware aims to support arbitrary applications and data types,
the concept of data points are held as general as possible. They can consist of air
quality data, noise pollution measurements, heartrate readings, or conceptually even
images, videos, or other binary data. Processing and interpreting the actual content of
data points (including subjective data) is handled later, i.e., by a data processor engine
(Section 6.3.2.2).

However, EveryAware is supposed to be able to handle arbitrary data (e.g., supporting
indexing, querying, basic analysis, etc.), even if no data processor module exists which
is able to interpret a particular type of data point. To achieve this, each data point is
augmented with a fixed set of description attributes in addition to the actual data. The
description attributes are divided into three categories:

• (1) Meta attributes are attributes which allow to keep track of data independent
information like received time, recording time, a device ID, or session IDs, etc.

• (2)Geo attributes emphasize the geo-spatial nature of personal sensor data (especially
environmental data) and make it possible to record the location of the sample being
taken including longitude and latitude as well as accuracy attributes, the location
provider or other relevant information.

• (3) Content attributes describe the content and its format. They help the system to
further process the data. These attributes include the data type (e.g., air, noise,
image), the format (e.g., JSON, XML, PNG), version numbers, etc.

Feeds. A major aspect of collecting massive amounts of data points is how to manage
them and how to control their accessibility. To this end we introduce the common notion
of feeds which are used to organized data points. A data point is always part of one or
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more feeds. Users can contribute to existing feeds or create their own feeds. While useful
for organizing data points, feeds also allow to attach data points to real world entities
such as major events like music festivals, places like the Eiffel Tower, or portable things
like a smartphone. However, the most important feature of feeds is managing access
restrictions. That is, feeds can be open or closed concerning read and write access, where
write access refers to the possibility of adding new data points to a feed. Open feeds
are accessible by everyone including anonymous users. Closed feeds are only accessible
by a limited set of users (members). The access restrictions allow users to create feeds
and share them with friends or other interested users without making their data publicly
available.15

Sessions. Data points are often semantically related by their temporal context. Such
contexts can be defined by the source of the data points, i.e., from turning on the source
to turning it of, or — representing a more semantic context — they are explicitly defined
by the user and represent something like “my way to work” or “a stroll in the park”. To
represent such temporal relations, we introduce sessions which basically are collections of
data points from the same source limited to a fixed timespan.

Extensions. In order to make the data representation flexible and for inherently sup-
porting the augmentation and annotation of the collected data (e.g., with additional
information, subjective data, or semantic context), we introduce the concept of extensions.
That is, we allow data points as well as sessions to be extended by other data points.
Because of the generic definition of data points the information used for annotation is
again very flexible.
One major application of the extension mechanism is tagging (i.e., adding specific

words further describing the tagged entity). In particular, sessions and data points can be
tagged by extending them (by referring to the respective data point or session ids) with
data points containing a set of tags. Because tagging data can have different formats, a
dedicated data processor module is required (see Section 6.3.2.2).

Using the extension scheme, it is also possible to update data points as well as sessions
after they have been sent without losing the original data. Since, generally, no raw data
is deleted, this also allows to always access the version history of a data point.

Claiming. Often, a significant hindrance for users to participate in data collection
campaigns is the requirement to create an account and sign up on the specific platform.
EveryAware aims to tackle this issue by introducing the notion of claiming. In particular,
claiming allows anonymous contribution to the EveryAware system while giving the user
the possibility to claim data points as soon as she decides to register an account. This
makes the contribution of data to the EveryAware convenient and provides some level of
anonymity since no previous registration process is required. Currently this functionality
is implemented by using device ids, i.e., the ids of the device sending the data point.
Knowing such a device id, the user can claim the corresponding data points. This still

15Note that Becker et al. [43] also introduced several levels of visibility for each data point in a feed (i.e.,
“details”, “statistics”, “anonymous”, and “none”). However this concept was mostly dropped since it
has proven to be impractical to use, i.e., for developers it was tedious to implement and for users the
concepts were hard to grasp (also see Section 6.3.4).
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Figure 6.4.: Technical architecture of the EveryAware system.

does not provide a high level of anonymity. However, there are several alternatives to
device ids discussed in Section 6.3.4.

6.3.2.2. Implementation layer

The goal of the EveryAware platform is to provide a reliable platform for collecting,
analyzing and visualizing a wide range of data types, specifically supporting environmental
data, health sensors, subjective data and more. For this, the EveryAware builds on a
flexible data processing framework which we explain in this section.
Layout. The overall data flow of the EveryAware processing framework is shown in
Figure 6.4. Data points come in through several (possibly distributed) REST endpoints
and are directly stored in an immutable data store. At the same time they are forwarded
to the data processor engine which interprets the raw data from the data points and writes
them into several basic views which can then be queried by users. To support advanced
visualizations, the basic views are augmented through a set of batch and incremental jobs.
Immutable data store. The highest priority of the EveryAware platform is to reliably
store the received data points. To ensure this, computational overhead such as syntactic
checks is kept at a minimum. The received data is directly written to an (possibly
distributed) immutable data store. Processing the data is externalized and is handled by
the data processor (covered later). This gives us the following advantages:

• High performance and availability: Any computation in the endpoint can introduce
sources of error and impede the performance of the data reception process. This
is especially a problem for applications with high transmission frequencies and
complex data structures.

• Flexibility: We can accept literally any data, since the endpoint does not restrict
the type of data sent via the REST endpoint. Different data types are handled by
a dynamically manageable set of processing modules in the data processor.

• Robustness: Storing the data in its raw form enables us to recreate the processed
content at any point in time.
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Data processor. The data processor directly receives data from the REST endpoint (or
can poll it from the immutable storage if required). The data is then parsed, interpreted
and augmented using a chain of processing modules. The resulting information is stored
in different views which are query-able from data access endpoints. The pipeline from
receiving the data, over processing it, to storing the results in a view, is managed by three
subsequent components: the module selector, a set of processing modules, and a set of
storage handlers.

• The module selector selects a processing module from a priority-chain. The matching
module is selected based on its data type defined by the data points descriptions
attributes or by deriving the data type from the raw content.

• The second component is the selected processing module. It extracts the actual
data from the raw content (e.g., a JSON file) and possibly augments the data with
additional information, calculates statistics, or handles missing information. As
covered later, there are dedicated modules for parsing noise pollution data, air
quality measurements, or subjective information (e.g., tags).

• Then, the data is passed to a storage handler which stores the results in dedicated
views. The storage handler may also pass the processed data directly to incremental
jobs for augmenting the views (as covered below). The data processor also tracks
which data points have been processed.

The modular approach allows to simply exchange processing modules (e.g., when an
updated version needs to be deployed). To ensure the consistency of the data, the
processing state for affected input data is reset. The data processor engine then processes
the marked data and replaces the results in corresponding view tables.

Furthermore, like the immutable input store, the data processor is designed to work in
distributed environments. This allows for replication of the REST endpoints enabling
effective processing of large amounts of incoming data.
This architecture has several advantages: The priority-chain-approach in the module

selector allows for flexibility in extending the data processor engine with additional
processing modules on demand. The modularized approach in general makes it easy to
deploy updates without risking to break the existing data, where keeping track of the
processing state of data points is the key to flexible module extensions and guarantees
robustness against processing failures. And finally, supporting distributed processing
ensures a scalable architecture than can cope with increasing amounts of incoming data.
Batch and incremental jobs. The data processor mainly processes and interprets the
incoming data. However, while it can handle certain data augmentation steps, it is not
designed for large batch processes which are often required for rich visualizations, complex
analysis tasks, or machine learning approaches. Because of this, EveryAware also employs
a set of batch and incremental jobs which are responsible for augmenting the basic views
generated by the data processor. These jobs can get data from the views as a whole, but
they can also be served data point by data point by the data processor. Thus, the general
structure of such jobs usually follows the basic ideas of the Lambda Architecture [343]
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proposed by Marz. That is, they consist of a batch layer, a speed layer and a serving
layer. As an example we consider our cluster preparation module which pre-calculates
clusters, e.g., to be visualized on a map (see for example Figure 6.6b). This is necessary
because, for example for our AirProbe application covered in Section 6.3.3, the amount of
points is too large to cluster on the fly. The batch component of the cluster job reads data
from the basic views provided by the data processor, clusters them and prepares them
for retrieval. The speed component of the cluster job receives updates directly from the
data processor or continuously polls the basic views and incrementally integrates the new
points into the existing clusters. These combined clusters are then served to the user via
dedicated API endpoints. Integrating such jobs into the general EveryAware framework
makes it possible to provide a very flexible and modular way to add new analysis methods
or visualizations.

6.3.3. Applications

The EveryAware platform provides a powerful framework for working with arbitrary data,
including participatory sensing or quantified self applications. Among other things, this
also enables novel studies on human navigation behavior in the participatory sensing
domain. In this section we give two examples of applications from the participatory
sensing domain for measuring noise pollution and assessing air quality, i,e., WideNoise
and AirProbe. In addition we give an outlook to the currently developed module Gears
which — in contrast to the specialized applications WideNoise and AirProbe — aims at a
more generic data representation for collecting, analyzing and visualizing data.

6.3.3.1. WideNoise and AirProbe: Noise pollution and air quality

Two major applications which have been implemented using our platform are WideNoise
and AirProbe. Both have been developed as part of the EU research project EveryAware16

and have been mentioned before by Atzmueller et al. [20]. WideNoise is an application
for measuring noise pollution. It was originally developed by WideTag17 and further
enhanced during the EveryAware project. AirProbe, developed by CSP18 as part of the
EveryAware project, monitors air quality. Both applications have a smartphone interface
(see Figure 6.5) as well as a web interface (see Figures 6.6b and 6.7). The smartphone
gathers data and transmits it to our server where it is augmented and aggregated by the
data processor to be visualized on the web frontend. WideNoise measures noise levels
using the built-in microphone of the smartphone (cf., Figure 6.5a), while AirProbe records
the measurements (such as NO2, CO, O3, VOC19, temperature and humidity) using an
external sensorbox [162] as shown in Figure 6.6a. The following paragraphs will focus on
WideNoise and AirProbe and their common as well as distinguishing features.

Subjective data. Noise pollution and air quality are both interpreted in highly subjective

16http://everyaware.eu, accessed December 2017
17http://widetag.com/, accessed March 2013 (not accessible any more)
18http://csp.it/, accessed: December 2017
19Volatile organic compounds

118

http://everyaware.eu
http://widetag.com/
http://csp.it/


6.3. The EveryAware platform

(a) WideNoise: the recording view as
well as the perception dialog.

(b) AirProbe: the current session
overview and the sensor value view.

Figure 6.5.: Screenshots of the WideNoise and AirProbe Android applications. For
WideNoise (a) the first screenshot shows the dialog used to measure noise levels (in dB) over a
short period of time. There the user can also guess the noise level before being presented with
the result in order to learn to judge noise levels. The second screenshot shows a dialog for adding
perceptions to the measured noise thus enabling the collection of subjective data. For AirProbe
(b) the first screenshot shows the current session the user is recording where the buttons at the
top-right corner allow the user to add custom tags for adding information about the context of
the measurements. The second screenshot shows the most recent measurements from different
sensors being recorded.

(a) The AirProbe sensor box (b) A screenshot of the map page of AirProbe.
The left side shows the cluster view, the right
side shows the grid view.

Figure 6.6.: AirProbe sensorbox and map view of the EveryAware web application.
The sensor box is used for collecting air quality data and a map visualizes various statistics.
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(a) A session of recorded air quality mea-
surements. Here a student walks from
the computer science building to the cafe-
teria at the University of Würzburg.

(b) A heatmap visualizing the number of mea-
surements in Kassel. The data was recorded
by a group of users during the participatory
sensing campaign APIC, cf., Sirbu et al. [457].

Figure 6.7.: Mobility related visualizations on the EveryAware web application. The
session view (a) allows for exploring individual traces, and the map view (b) shows aggregated
spatial coverage information.

contexts. For example, high noise levels are not perceived as pollution when users are
attending a rock festival. Similarly users may not perceive high ozone levels as bad
when they are sunbathing. Thus, both, WideNoise and AirProbe support extending the
objective sensor readings with subjective data as explicitly supported by the EveryAware
system. In both cases, this subjective data is expressed as tags. Also, WideNoise allows
to add noise estimates as well as user perceptions to the noise samples. The corresponding
functionality is shown in Figure 6.5.

Visualization and mobility. After the data is received by the EveryAware system, the
data processor parses and aggregates the data by applying several dedicated processing
modules. The results are statistics and corresponding visualizations on a global scale as
well as on the user level. One major visualization is the world map as shown in Figure 6.6b.
It displays, for example, a clustered view of the recorded data (providing corresponding
detail information on demand [447]) as well as a tag cloud characterizing the summarized
data by its semantic context. Two more important views allowing to visualize human
mobility in the context of participatory sensing campaigns can be seen in Figure 6.7. It
shows a view for reviewing existing sessions a user has recorded in Figure 6.7a, and a view
which shows a map where the spatial coverage is visualized as a heatmap Figure 6.7b
collected by a group of participants during the participatory sensing challenge APIC [457].

Basic statistics. WideNoise has been used in a variety of campaigns. This includes for
example a case study in the Heathrow airport area to monitor noise pollution caused by
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(a) WideNoise
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(b) AirProbe

Figure 6.8.: Number of measurements over time for the EveryAware applications
WideNoise and AirProbe. For WideNoise, several major peaks are visible. These were due
to specific case studies (e.g., fist large peak), or news paper articles (e.g., second large peak). For
AirProbe, the first large peak corresponds data from the APIC challenge (Chapter 8). The other
peaks stem from various internal case studies.
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air traffic. In Figure 6.8, we show data from the years 2012 and 2018, where we collected
more than 64,000 noise samples recorded by over 18,500 devices from all over the world.
The AirProbe system was built for measuring the air pollution in a major case study
across several cities. For more details, see Chapter 8. There we have already collected
close to 120 million air quality samples from only about 82 devices. The large difference in
numbers is due to the discrete nature of WideNoise, while AirProbe applies a continuous
sampling scheme. Also see Figures 6.8a and 6.8b for sample growth rates. The peaks
are mostly due to events, media announcements, or dedicated case studies. The large
number of samples makes the AirProbe application our main benchmark application. In
particular for AirProbe we had to carefully optimize our system in order to provide a
seamless user experience: for example when new data is sent to the server, updates should
optimally be visible in less than eight seconds [279].

6.3.3.2. Gears: Towards processing generic data

WideNoise and AirProbe have demonstrated the flexibility of EveryAware to handle
diverse application scenarios by providing a general framework for collecting, analyzing
and visualizing environmental data in combination with subjective impressions and
perceptions. However, both applications work with very specific types of data, i.e., noise
pollution and air quality measurements. Thus, the corresponding modules are mostly
optimized for the respective data type. Consequently many integrated analysis tools
and visualizations are not directly portable between the applications. To solve this the
EveryAware platform currently moves towards implementing a generic data type which
features a flexible structure in order to support a wide range of different applications. For
this we implement a module similar to WideNoise and AirProbe, we call Gears. That
is a dedicated data processing module takes care of parsing and interpreting the data.
In addition, a corresponding visualization framework is developed that — due to the
underlying generic data format — supports a broad spectrum of data types. In the
following we briefly introduce the data format and its technical implementation as well
as the visualization component. Both are visualized by Figure 6.9. Note that the Gears
system is still under development. However, a beta version is already available.20

The generic data format. The goal of a generic data format is to support a wide
variety of different application scenarios in the domain of participatory sensing. To
achieve this, we introduce a format based on the notions of sources, channels and channel
components which emphasizes our focus on sensing campaigns. The most basic concept
are sources which represent sources of data such as air quality boxes, weather stations, a
fitness band, and more. Each source is made up of channels which roughly represent the
individual sensors of the corresponding source, such as an accelerometer, a CO2 module,
or a heart rate sensor. Now, each channel can have several (channel) components. For
example, an accelerometer always measures the acceleration in three dimensions: x, y,
and z. Each channel component can either hold numbers or text. These data points are
processed by a dedicated data processor module (cf. Section 6.3.2.2) and saved in a view

20http://cs.everyaware.eu/event/gears
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1 {
2 timestamp: 12312335354345,
3 channels: {
4 accelerometer: {
5 x: 0.5533,
6 y: 0.12223,
7 z: 0.001
8 },
9 co2: {

10 value: 0.65
11 },
12 tags: {
13 value: "smog,traffic"
14 }
15 }
16 }

(a) The Gears data format (b) The Gears dashboard

Figure 6.9.: Example of the Gears data format and web dashboard. The listing on the
left (a) shows an example data point (e.g., from some mobile sensor box) using the Gears data
format in its JSON representation. The screenshot on the right (b) depicts the Gears dashboard
for visualizing generic data. Here, two widgets have been configured showing black carbon and
carbon monoxide readings from corresponding sensor sources. One is a live widget (updating as
new data is coming in) and one is a history widget (used for exploring existing data).

table analogously to the data points from WideNoise and AirProbe. Thus, all the features
mentioned in Section 6.3.2.1 are applicable to generic data points as well. This includes,
e.g., meta, geo, and content attributes, as well as the concepts of sessions and extensions.
An example of a single data point from an air quality sensor box can be seen in

Figure 6.9a. The example also defines a channel for tags demonstrating how the same
format can be used to also add subjective or contextual data to the recorded sensor
values. There also is wide variety of other application domains for this data format. For
example, we have implemented a frontend for defining and distributing questionnaires
and surveys. Also, the dashboard visualization framework, seen in Figure 6.9b, uses the
Gears data format in combination with feeds (as introduced above) to manage dashboards
and widgets for visualization.

Widget based visualizations. The generic data format Gears also allows to build
visualizations which can be applied to a wide variety of different data types. In particular
we are working on libraries allowing to efficiently implement widgets which can be used on
arbitrary data within the Gears environment. To fully exploit theses widgets we further
provide a fully customizable dashboard system as visualized in Figure 6.9b. It shows
two widgets, a history widget for exploring past data, and a live widget for monitoring
currently incoming data. Additionally, the widgets can also be used in a standalone
mode, e.g., to build static statistics pages. This system allows to design highly reusable
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components and a flexible user experience. We aim to enable users to easily run campaigns
like WideNoise or the AirProbe challenge without having to set up their own systems.

6.3.4. Discussion

The EveryAware system is a flexible platform for handling many different types of data
and aims at explicitly supporting subjective information, such as perceptions or personal
impression, e.g., in the form of tags. It was originally introduced in 2013 by Becker
et al. [43] and has been successively improved since then. Some concepts have proven
impractical and other components have been further developed or replaced by more
efficient modules. Thus overall, EveryAware is a quickly changing and evolving system
driven by a relatively small number of people. Here, we discuss some issues and future
directions which can help to further improve EveryAware.

Access and visibilities. Our original proposal of EveryAware [43] specified visibility
levels for each data point in each feed. These visibility levels were supposed to allow
users to set the granularity of the data they share in order to protect their privacy. For
example, it was possible to restrict the “visibility” of data points to aggregated views,
e.g., as part of a mean value over all users. This way the user was able to obfuscate
more detailed information such her daily route from home to work or other data from
which personal information can be derived. While the idea is still valid, there are two
technical issues with this approach: First, each data point had to be handled separately,
making the index structures to query data points elaborate and implementing analysis
or visualization algorithms tedious. Secondly, enforcing the visibility restrictions is not
an easy problem, e.g., because every API endpoint needs to be carefully designed and
for every new algorithm these restrictions have to be ensured. Nevertheless, Mineraud
et al. [359] judged our four-level visibility design to be crucial for providing the “necessary
flexibility to maximize the re-usability of the data by remote third-party services”. Thus,
while dropping the point-wise support of these levels and currently moving towards a
simpler, strictly feed-based access management, we aim to reintroduce our four-level
visibility approach based on feeds. In combination with a general data format like Gears
as introduced in Section 6.3.3.2 and dynamic feed to data point relations, it may be
possible to enforce these visibility levels.
Claiming. The claiming procedure is a concept which can significantly reduce the
threshold for users to share data through the EveryAware platform by postponing the
registration procedure. However, the current implementation has several issues. First we
still lack an efficient method for incorporating the information about claimed data points
into our already processed views. Especially for incrementally calculated aggregated
statistics the claiming procedure may trigger long running batch jobs. Second, using
device ids to authorize claiming (as is currently the case) is insecure because it is not a
protected resource and users can still be identified. Generating a random key instead of
using the device id can help to reduce the risk of someone claiming the data of someone
else. However, in both cases, the individual user is still traceable because the random id
stays the same. To solve this, the random key can be encrypted together with a random
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seed. While in principle this allows users to anonymously contribute data to EveryAware,
processing a claiming request will require decrypting the random keys of all unclaimed
data points. Future research may yield solutions to some of the mentioned problems.

Extensions and sessions. Extensions have been proven useful in our scenario, e.g.,
in order to add tags after the actual data point has already been sent. However, the
current approach is limited to extending single data points or sessions. While we will
keep basic support for this feature in order to allow for arbitrary data to be extended,
we are currently exploring an alternative approach using the generic data format Gears
which allows to track tagging and other annotation data via dedicated channels or sources.
Using dedicated channels our sources would replace some of the meta headers of the
conceptual layer (cf. Section 6.3.2.1) moving them from the headers to the actual data.
While this makes the overall procedure more flexible, it possibly bloats the data with
meta information and will require specialized data processor modules.

Data processor. The data processor was originally designed to poll new data points
from the immutable data store. We are currently replacing it by an actor-based processor
based on a publish-subscribe architecture allowing for a more dynamic and scalable
implementation. Also, this enables us to serve data back to the user in real-time.

Work in progress and future work. Generally, the EveryAware platform keeps
evolving as we adapt to more and more application scenarios. In this process the
underlying concepts sometimes need to change rapidly. Nevertheless, we believe that with
the Gears module in combination with our flexible data model based on feeds, we will
be able to support a wide range of applications without having to implement specialized
solutions.

6.3.5. Related work

The Internet of Things is defined by the connectedness of devices. Thus, data exchange
must be as simple as possible. For this end a large number of data storage and distribution
platforms have emerged Mineraud et al. [359]. Some examples are Xively21 (formerly
Cosm and before that Pachube), Ubidots22, Exosite23, and ThingSpeak24.
These platforms provide powerful frameworks to work with devices, sensors, and

timeseries data. Most of them support flexible paradigms for defining devices with
different data types, channels, or sensors and provide dashboard systems to visualize the
recorded data. However, even though the data structures of devices can be customized,
the mentioned IoT platforms all impose a specific model for the data points of connected
devices. The EveryAware system takes a different approach where data points are kept on
a more abstract level allowing for any content to be handled by a flexible data processor
engine (cf. Section 6.3.2.1). Theoretically, the model of any platform mentioned above
can be emulated using the EveryAware system if an appropriate data processor module

21https://xively.com, accessed: August 2017
22http://ubidots.com, accessed: August 2017
23https://exosite.com, accessed: August 2017
24https://thingspeak.com/, accessed: August 2017
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is implemented. For an example, see the Gears module as described in Section 6.3.3.2.
Conceptually, this paradigm even allows to collect images or video footage.

Furthermore, the Internet of Things has focused on things and the corresponding data
but not on how people interact with these things [492] or what the data actually means
to them. This mindset is mirrored by the providers mentioned above, thus, hardly any
functionality is present to share information about the collected data or to add subjective
impressions. With EveryAware we try to work towards a future Internet of Things and
People by allowing data points to be extended with any kind of data. This helps to put
data into a meaningful context including tags and other subjective information people
may think of. To the best of our knowledge, this approach is novel in context of the
Internet of Things. Our platform also allows the application of various data mining and
knowledge discovery tools. This aspect addresses challenges as mentioned for example by
Hotho et al. [247] and further distinguishes our platform from the mentioned providers.

6.3.6. Conclusion

The EveryAware platform provides a robust, efficient, and flexible system for collecting,
analyzing, and visualizing sensor data specifically supporting subjective data such as user
impressions or perceptions. We introduced two specialized applications, i.e., WideNoise
for noise measurements and AirProbe for air quality sensing, as well as the currently
developed module Gears for generic data. This demonstrates that EveryAware can
support a variety of different application domains, e.g., in the context of participatory
sensing. Specifically, the mobile aspect of this kind of data opens up new possibilities
to study human mobility (e.g., Figure 6.7) in combination with a rich ecosystem of
contextual information. Furthermore the explorative nature of EveryAware aids the
processes of hypothesis conception (cf. Section 1.2.2). For a case study analyzing data
from EveryAware, also see Chapter 8 and Section 11.1.

As future work, we mainly aim to push the generic module Gears and plan to add new
and more advanced analysis algorithms incorporating methodology from data mining
and machine learning. Also there are still some challenges to be addressed including,
for example, in-depth evaluation of distribution techniques, data storage and processing
engines, enabling users to customize or add certain data processor modules, or developing
a trigger system based on user-defined events. While this will still involve many hours
of design and implementation effort, we believe that a well designed open source system
in this area deployed and maintained by the academic community can greatly improve
the current situation of ad-hoc solutions, commercial closed-source systems, and privacy
critical collection campaigns.
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7. Photowalking urban environments

In this chapter, we investigate human navigation behavior in urban areas based on photos
from the social photo-sharing platform Flickr. In the process we apply most of our
proposed methods from Part II. That is, we construct a pipeline consisting of HypTrails
(Section 3.3.2) for comparing hypotheses about overall navigation processes, SubTrails
(Chapter 5) for discovering subgroups with exceptional transition behavior, and Mixed-
Trails (Chapter 4) for comparing hypotheses featuring heterogeneous processes human
navigation. Furthermore, we use SparkTrails (Section 6.1) for speeding up calculations
and VizTrails (Section 6.2) for visualizations. Furthermore, we showcase how to prepare
data and formulate hypotheses in a setting with spatially continuous observations. Thus,
overall, this case study illustrates how our methodological work provides a full-featured
toolbox for exploring human navigation behavior. The work presented in the following is
mainly based on our previously published work on phototrails [44] and contains results
from Becker et al. [41] and Lemmerich et al. [312].

7.1. Introduction

Also already mentioned in Chapter 1, understanding the way people navigate urban
areas represents an important problem that has implications for a range of societal
challenges such as city planning and evolution, public transportation or crime. Recent
research in computational social science has studied human movement trajectories in
cities through a variety of data sources including mobile phone data [214, 463], GPS
tracking [527], Wifi tracking [418], location-based social media platforms [116], online
photo sharing sites [135, 205, 206] and others.1 Such studies have provided a number
of insights into human movement trajectories. For example, past work has indicated
that human mobility exhibits regularities [214, 463] and spatio-temporal patterns [116].
Research has also shown that we can successfully leverage these patterns for certain tasks
such as constructing high quality travel itineraries [135].2 Yet, little is known about
how the corresponding trails materialize, i.e., what factors play a role when people move
through urban spaces. Thus, in the following, we extend the stream of research on human
movement by studying the underlying navigational processes of how urban photo trails
are produced. A better understanding of this process is relevant for a series of practical
problems, such as local recommendations of picturesque locations, studying touristic
movement patterns, or movement of people in urban environments in general.

1For more information on data sources in the context of human mobility research, also see Section 2.1.2.
2For more information on studies and results about geo-spatial navigation, also see Section 2.1.
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(a) Berlin heatmap (b) Transition probabilities (c) Proximity hypothesis

Figure 7.1.: Analyzing human navigation behavior in urban areas based on dis-
cretized sequences of photos from Flickr. In (a), we visualize a cell-based grid layout
of Berlin with photo frequencies visualized in a heatmap format, as derived from our data at
interest. (b) depicts an example of transition probabilities between cells. In particular, it depicts
the cell where the “German Bundestag” is located, and visualizes the transition probabilities to
subsequent cells, i.e. cells where people take photos after they photographed the Bundestag. For
instance, with a probability of 0.07, people take a picture at the “Brandenburg Gate” after they
have taken one at the Bundestag. As we are interested in gaining insights into the processes
producing these trails, we formulate hypotheses based on belief in transitions between cells
(represented as parameters of a Markov chain). In (c), we depict the transition probabilities
from the Brandenburg Gate to other cells based on an exemplary proximity hypothesis which
represents the belief that people successively take their next photo close to their last one.

Problem setting. In the following,tial photo data from four cities (Berlin, London,
Los Angeles and New York) retrieved from the social photo-sharing platform Flickr3. In
particular, we analyze urban photo trails defined as a sequence of spatial positions in a
city over a period of time as, e.g., obtained from the geo-temporal meta data of photos.

On this data, we first assess the plausibility of different potential explanations (hypothe-
ses, cf. Section 3.3.2.1) for the overall movement patterns we observe and compare the
corresponding hypotheses across cities. For example, we compare a proximity hypothesis —
which represents a belief that people frequently take subsequent photos in geographically
close regions of a city — with a points of interest (POI) hypothesis that represents the
belief that humans take subsequent photos of POIs.
Secondly, we investigate whether there are several sub-processes responsible for the

high-level patterns we observe. In particular, besides studying the overall movement
behavior, i.e., assuming a homogeneous behavioral process, we also investigate whether
we can find subsets of our data (such as trajectories from tourists or locals) which exhibit
exceptional behavioral patterns. Using these patterns, we then aim to find heterogeneous
explanations for the observed urban photo trails, taking several sub-processes into account.
Approach. To tackle these challenges, we resort to several approaches reviewed or pro-
posed in this thesis including HypTrails [453] (see Section 3.3.2), for comparing hypotheses
about overall navigation processes, SubTrails (Chapter 5), for discovering subgroups with
3https://flickr.com, accessed: December 2017
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exceptional transition behavior, and MixedTrails (Chapter 4), for comparing hypotheses
featuring heterogeneous processes of transition behavior. To apply these methods, we
map each photo of a trail to a discrete area within a specific city (i.e., using grid cells as
depicted in Figure 7.1a or census tracts). For all our approaches we investigate transition
probabilities between these areas as shown in Figure 7.1b. For formulating hypotheses
(e.g., Figure 7.1c), we utilize general information (like geo-spatial distance), data extracted
from the social semantic web (e.g., points of interests in cities from Wikipedia, DBpedia,
and YAGO), and corresponding usage statistics (view counts).

Contribution and findings. The main contribution of this case study is an in-depth
analysis of human navigation behavior in the context of urban photowalking on a homo-
geneous as well as a heterogeneous level.

This encompasses a systematic evaluation of homogeneous hypotheses for explaining how
urban photo trails are produced in four different cities. We find interesting commonalities,
in particular, that the partial ordering of evidence for different hypotheses is quite stable
across the cities we have investigated. Furthermore, information extracted from social
media — in the form of concepts and usage statistics from Wikipedia — allows for finding
advanced explanations for human movement trajectories. Most prominently, our results
suggest that humans seem to prefer to consecutively take photos at proximate POIs that
are also popular on Wikipedia. In addition, we also observe differences between cities:
For example, proximity is less relevant for Los Angeles, which is a plausible finding given
the unique topology of the city among the studied datasets.

Finally, we also study the heterogeneous nature of the overall navigation process by first
discovering subsets of our data with exceptional navigation characteristics and secondly
combining them into heterogeneous hypotheses accounting for these characteristics.

The findings of our work can enable photo sharing websites to offer localized recommen-
dations of picturesque photo spots according to actual tourist trajectories, city planners
to explore human movement patterns of its inhabitants in general, or tourist organizations
to facilitate and optimize tours.

Structure. Starting with Section 7.2, we describe the Flickr data we use in our ex-
periments. In Section 7.3, we present our hypotheses. With regard to experiments,
Section 7.4.1 summarizes our results on the overall data, Section 7.4.2 explores transition
subsets with exceptional navigation behavior, and Section 7.4.3 compares heterogeneous
hypotheses which assume that the overall navigation behavior is a combination of tourists
and locals which exhibit specific behavioral characteristics. Finally, we discuss our work in
Section 7.5, give an overview of related work in Section 7.6, and conclude in Section 7.7.

7.2. Data

In this section, we frist describe the process of collecting photos from the social photo-
sharing platform Flickr4 which we use to analyze urban human navigation behavior in
this case study. Then, we describe the transformation procedure of these photos into the

4https://flickr.com, accessed: December 2017
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Table 7.1.: Data collection parameters for the Flickr data. Bounding boxes and center
coordinates used for collecting our data and creating hypotheses.

Berlin London Los Angeles New York
min lon. 13.088400 -0.5103 -118.6682 -74.2589
min lat. 52.338120 51.2868 33.7037 40.4774
max lon. 13.761340 0.3340 -118.1552 -73.7004
max lat. 52.675499 51.6923 34.3368 40.9176
center lon. 13.383333 -0.1280 -118.2450 74.0071
center lat. 52.516667 51.5077 34.0535 40.7146

required representation of trails and state transitions for which we employ two different
discretization methods. Finally, we give a quick overview on how we derive popularity
scores for the POIs in each city based on Wikipedia.

7.2.1. Data collection

Our datasets5 contain meta data — i.e., user, temporal, and geo-spatial (latitude and
longitude) data — about images uploaded to the Flickr platform. In particular, we focus
on pictures taken in the cities of Berlin, London, Los Angeles, and New York between
January 2010 and December 2014. For each city, we define a bounding box, see Table 7.1.
We acquired corresponding data by crawling Flickr’s public API. Since our analysis
requires an exact position, we remove pictures with less than street-level accuracy (level
16 on the Flickr scale6).

For our analyses, we interpret the sequence of all photos of a single user as a photo trail
ordered by the time each photo was taken, regardless of the time difference between the
photos (also see Section 7.5 for a discussion on the influece of large time differences).

7.2.2. Discretization

The methodology covered in this thesis (Part II) builds upon discrete state spaces to
analyze human navigation behavior (cf. Section 3.1). Thus, we need to discretize
the continuous state space defined by the geo-spatial context of the collected photos.
Depending on the discretization mechanism (yielding a discrete set of states), each photo
in a photo trail is mapped to such a state according to its geo-reference. In this case
study, we employ two different discretization approaches: a grid-based approach, used for
fine-grained homogeneous movement analysis, and a more semantic discretization based
on census tracts for studies on heterogeneous aspects of human navigation. Both methods
are introduced in the following two sections.

5Dataset access can be requested via e-mail: becker@informatik.uni-wuerzburg.de.
6https://www.flickr.com/services/api/flickr.places.findByLatLon.html,
accessed: December 2017

132

https://www.flickr.com/services/api/flickr.places.findByLatLon.html


7.2. Data

Table 7.2.: Basic dataset statistics of the Flickr datasets. For the four cities we investigate,
this table shows details about the crawled photos from Flickr as well as the points of interests
queried from DPpedia. In addition to the covered time spans and photo counts, we also list
statistics about derived information such as the number of cells or trails.

Berlin London Los Angeles New York
years 2010-11 2010-14 2010-14 2010-14
photos 60,978 794,535 300,373 714,549
cells 43,052 66,444 84,014 58,065
trails 4,364 35,101 15,357 31,246
covered cells 6,343 23,694 25,834 15,232
avg. trail length 13.97 22.64 19.56 22.87
POIs 1,085 7,228 1,462 6,002
avg. view count 1,240 1,272 3,654 1,511

7.2.2.1. Grid cells

In our first (and more extensive) set of experiments on homogeneous navigation behavior,
we aim to explain how people move between places in a city, such as venues, sights, or
train stations. Thus, we choose a grid-based approach with a cell size of 200m x 200m.
From our experience, this cell size is small enough to distinguish places close to each other
and large enough to (i) aggregate movement at a single place as well as (ii) to reduce the
sensitivity due to GPS inaccuracies. Figure 7.1 shows cells of such a grid on Berlin to
give an idea about the chosen granularity.
Furthermore, in our first experiments we focus on the sequential characteristics of

different places. Thus, we remove all self-transitions (i.e., transitions from one grid cell
to itself) from the photo trails in order to account for people taking several photos at
one place. Basic statistics of the processed datasets are summarized in Table 7.2. For
the four cities we investigate, this table lists details about the covered time spans and
photo counts, as well as statistics about derived information such as the number of
cells or trails. For example, we have crawled 60,978 photos in Berlin from 2010 to 2011
resulting in 4,364 trails and 6,343 covered cells out of the 43,052 cells covering Berlin.
In Section 7.3, we formulate homogeneous hypotheses to explain this data and compare
them via HypTrails [453] (cf. Section 3.3.2) in Section 7.4.1.

7.2.2.2. Tracts

We also study heterogeneous aspects of human navigation in the context of photowalking.
To this end, we employ a more coarse level than the previously introduced fine-grained
grids. That is, we focus on data from Manhattan and apply a discretization based on
census tracts (administrative units). We map each photo according to its geo-location
to one of these 288 census tracts (cf. Gambs et al. [190]) that we use as state space.
Then, for each user, we build a sequence of different tracts she has taken photos at (again,
excluding self-transitions). The final dataset contains 386,981 transitions overall. To this
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dataset we apply SubTrails (cf. Chapter 5) to find subgroups with exceptional transition
behavior in Section 7.4.2 and employ MixedTrails Chapter 4 in Section 7.4.3 to study
heterogeneous hypotheses accounting for the discovered subgroups.

7.2.3. Points of interest

We work with hypotheses that utilize information about points of interest (POIs) in
a city (see Section 7.3). We query these POIs from the social semantic web, in our
case DBpedia [306], and YAGO [338].7 For each city, the POIs are filtered by bound-
ing box according to the properties geo:lat and geo:long. Also, area concepts such as
"Germany" or "Berlin", which do not correspond to actual locations (rdf:type equal to
yago:District108552138 ), are removed. See When formally referring to the set of all POIs
for each city we use the letter Q in Section 7.3.
Additionally, we quantify the importance of a POI in some hypotheses. As an ap-

proximate measure of importance we take page view counts of the Wikipedia articles
describing the POIs. For that purpose, we extracted view counts from data available at
the Wikimedia download page8 —in this work, we use the view counts for January 2012.
Table 7.2 shows the number of POIs per city and their average view count.

7.3. Hypotheses about urban navigation

A major part of this case study is concerned with explaining fine-grained human navigation
behavior on the overall data (assuming a homogeneous navigation process which does not
distinguish between sub-processes, such as different user groups, cf. Section 7.4.3). To this
end, we employ the HypTrails approach [453] (cf. Section 3.3.2) which allows to compare
hypotheses about human trails on a discrete state space. Hypotheses are expressed by
transition probability matrices φ that reflect beliefs about transitions between such states.
This section describes how several intuitions about photo trails can be expressed as such
matrices.

7.3.1. Basic concepts

For our geo-spatial setting, we defined states by discretizing the continuous geo-spatial
area as described in Section 7.2. To formulate hypotheses for HypTrails, we now formulate
the beliefs about transitions between each ordered pair of states. That is, given a state
si of a user’s last photo, we specify the probabilities Pr(sj |si) for her next photo to be
taken at every other state sj .

For example, if a hypothesis assumes that a user, who took her last photo at state s1,
will take the next photo at state s2 with probability 0.5, then we set Pr(s2|s1) = 0.5. We
assign these transition probabilities between states as the values of the hypothesis matrix:
φ = (φi,j) with φi,j = Pr(sj |si). Please recall that the hypothesis matrix is a stochastic
matrix since each row i of φ sums to 1, i.e.,

∑
j φi,j = 1 (cf. Section 3.3.2). To simpify

7POIs were queried from http://dbpedia.org/sparql on the 15.03.2015.
8http://dumps.wikimedia.org/other/pagecounts-raw/
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the formulas in this section, we do not directly express transition beliefs as probabilities,
i.e., we skip normalization factors. Rather, we specify a belief function P̄ (sj |si) where
the rows do not necessarily sum up to 1. This function can then be transformed into
a probability distribution by multiplying it by a normalization factor 1

Z obtained by
summing over all values of P̄ with regard to the source state si:

Pr(sj |si) =
1

Z
P̄ (sj |si), with Z =

n∑
j=1

P̄ (sj |si) (7.1)

In this case study, we use Gaussian distributions for weighting transition probabilities.
In this context, the elements of a hypothesis matrix φ often take very small values.
For computational reasons, we set the value for a belief in a transition φi,j to 0 if the
transition probability falls below the threshold of 0.01. Furthermore, we set the beliefs
in self-transitions to zero (φi,i = 0) for all hypotheses because we are more interested
in modeling actual movement without the influence of stationary processes. This is in
accordance to the removal of self-transitions in the observed data for our experiments.

Next, we describe the homogeneous hypotheses that we compare for explaining human
navigation behavior as observed through photo trails. We distinguish between global
and local hypotheses. For global hypotheses the transition probabilities are the same
independent of the source state, i.e., ∀i, j, k : Pr(sj |si) = Pr(sj |sk). For local hypotheses
this does not hold, resulting in individual transition probabilities for each source state.

7.3.2. Uniform hypothesis

This global hypothesis believes that each transition is equally likely assuming that users
take pictures uniformly at random anywhere regardless of their previous location:

P̄uniform(sj |si) = 1 (7.2)

As in the example in Section 3.3.2.1, we use the uniform hypothesis as a baseline
hypothesis: an informative hypothesis should at least be more plausible than the uniform
hypothesis in order to express valid notions about the processes underlying human photo
trails.

7.3.3. Center hypothesis

Typically, the city center is the most lively part of a city. Thus, this hypothesis assumes
that users always take their next picture near the city center regardless of the location of
their last picture. To formalize this global hypothesis, we use the geographic center C of
the city (as listed in Table 7.1) and lay a two-dimensional Gaussian distribution centered
at this point over the corresponding discrete state space. Given the haversine distance
dist(C, j), cf. Sinnott [456], between the city center C and the central point of state sj ,
we calculate the entries of the hypotheses matrices from the following distribution:

P̄center(sj |si) = e−
1

2σ2
dist(C,j)2 (7.3)
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We parameterize the center hypothesis with the standard deviation σ (e.g., in kilometers).
A small value of σ indicates that most pictures are taken very closely to the city center.
When σ approaches infinity the hypothesis approximates the uniform hypothesis.

7.3.4. Points of interest (POI) hypothesis

Previous work on photo trails has shown that it is possible to automatically construct
travel itineraries through a city by analyzing the behavior of Flickr users [135]. This
suggests that humans favor points of interests — including not only tourist attractions,
but also important public transportation spots or the locations of government institutions
— when taking photos throughout major urban tourist areas. The POI hypothesis, which
is global by nature, captures the intuition that people take a majority of pictures near
such POIs. To model this, we first express an attraction force for each POI with a
two-dimensional Gaussian distribution. Formally, for each state sj and each POI q ∈ Q,
we get an attraction value G(q, j) that corresponds to the likelihood that the POI q is the
cause for a picture at state sj by factoring in the distance between the POI and the state:

G(q, j) = e−
1

2σ2
dist(q,j)2 (7.4)

As before, dist(q, j) describes the haversine distance between POI q and state sj . Then,
for each state, we aggregate the attraction values of all POIs q ∈ Q in the respective city:

P̄poi(sj |si) =
∑
q∈Q

G(q, j) (7.5)

In doing so, states that are near multiple POIs have a stronger attraction to users. Again,
we have to choose an appropriate standard deviation σ; a small σ assumes that photos are
taken directly at the point of interest, whereas a larger σ assumes that pictures are taken
in the surroundings of a POI. Larger values of σ may represent the fact that people do
not take pictures directly at a POI, e.g., to cover an architectural attraction fully in one
picture. To find the POIs for each city, we utilize DBpedia as described in Section 7.2.3.

Weighted POI hypothesis. Each city contains a large amount of potential POIs.
However, not all of these are equally important. In particular, studies as by Hasan et al.
[232] find that popularity of places plays an important role when modeling human mobility.
For example, the “Brandenburg Gate” is more likely to influence human trails in Berlin
than the less known “Charlottenburg Gate”. We capture this notion in a weighted POI
hypothesis by approximating the importance of a POI q by the view count views(q) of the
Wikipedia article corresponding to this POI. If the view count of an article is very high
(as e.g., for the “Brandenburg Gate”), we expect the respective POI to have a stronger
influence on the sequence of image locations. We quantify this hypothesis by weighting
each term of the POI hypothesis:

P̄weighted_poi(sj |si) =
∑
q∈Q

(views(q) ·G(q, j)) (7.6)
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Since we expect view counts to follow a power law, we also apply a sub-linear weighting
scheme to avoid overemphasizing the importance of very popular points of interest:

P̄log_weighted_poi(sj |si) =
∑
q∈Q

(log(views(q)) ·G(q, j)) (7.7)

7.3.5. Proximity hypothesis

The proximity hypothesis is motivated by findings of previous work [116, 214, 453]. It
expresses the belief that the next image of a user will be taken nearby the last image.
This is the first local hypothesis. To formalize this hypothesis, we consider the haversine
distances dist(i, j) between the center points of two states si, sj . Then, we can again
specify the respective transition probabilities by applying a two-dimensional Gaussian
distribution:

P̄prox(sj |si) = e−
1

2σ2
dist(i,j)2 (7.8)

As before, a standard deviation σ must be specified; a small value of σ suggests a photo
is more likely to be taken very close to a user’s previous photo. An example for this
hypothesis is depicted in Figure 7.1c where we visualize our beliefs in transitions from
one state to other states (i.e., which is represented by one row φsi of the hypothesized
transition probability matrix φ).

7.3.6. Mixture of hypotheses

Finally, we are interested in studying the effects of a mixture of two hypotheses. Technically,
we mix two hypotheses by element-wise multiplication of the corresponding hypothesis
matrices. In this case study, we focus on combining the intuition that people are likely
to take pictures at POIs (or close to the city center) on the one hand, but at the same
time stay close to their current location for their next photo on the other hand. We can
capture this by combining the POI (or center hypotheses) with the proximity hypothesis
This results in two local hypotheses as detailed in the following. Please note that other
kinds of combinations are also conceivable.

Proximate weighted POI hypothesis. First, we are combining the POI hypothesis
with the proximity hypothesis, i.e., we assume that people will move to a POI to take
their next photo but, instead of moving to a random POI, they choose one close by:

P̄prox_(log_)weighted_poi(sj |si) = P̄prox(sj |si) · P̄(log_)weighted_poi(i, j) (7.9)

Proximate center hypothesis. Similarly, the following formulation expresses the belief
that the next picture is likely taken closer to the city center, but limits the area to move
to a location close to the current one:

P̄prox_center(sj |si) = P̄prox(sj |si) · P̄center(i, j) (7.10)

137



7. Photowalking urban environments

7.4. Results

In this section, we present our results of analyzing urban human navigation behavior
in the context of photo trails from Flickr. This encompasses mainly experiments of
homogeneous nature (i.e., without considering sub-processes like differently behaving user
groups), but also includes several results on heterogeneous aspects. In particular, we
focus on homogeneous processes in Section 7.4.1 using a fine-grained discretization based
on grid cells. This is the main part of this study and encompasses experiments across
several cities. Afterwards, we also study homogeneous explanations for urban navigation
based on transitions between census tracts. In particular, we first explore subgroups with
exceptional transition behavior in Section 7.4.2, and then use the accquired information
to formulate and compare heterogeneous hypotheses in Section 7.4.3.

7.4.1. Modeling homogeneous behavior

In this section we study human navigation behavior through photo trails on a homogeneous
level. In particular, in Section 7.3, we introduced a set of homogeneous hypotheses that
express beliefs on where people take their next picture while moving through a city.
In this section, we compare these hypotheses with each other based on empirical trails
derived from four different cities — Berlin (Germany), London (United Kingdom), Los
Angeles (USA), and New York (USA) (see Section 7.2) — by employing the HypTrails
approach [453] as outlined in Section 3.3.2.
In the following experiments, we use the grid-based data as outline in Section 7.2.2.1.

Also, note that we scale concentration factors κ with regard to the number of state spaces.
That is, we calculate the Dirichlet parameters α = (αi,j) elicited from the hypothesis
matrix φ = (φi,j) as αi,j = κ ·m · φi,j , where m is the number of states and φ represents
transition probabilities φi,j = Pr(si|si) between states. See Section 3.3.2.3 for details.

First, we focus on Berlin as a representative example in Section 7.4.1.1. We report in-
depth experimental results for different parameter settings of each hypothesis. Afterwards,
we report results for the other three cities in Section 7.4.1.2 focusing on the individually
best parameter settings and highlight prominent differences between them.

7.4.1.1. Berlin

In this section, we thoroughly study each hypothesis and their different parameterizations
in the same order as they have been introduced in Section 7.3, focusing on Berlin.

Center hypotheses. For Berlin, the most photos are clearly centered around the cultural
center as shown in Figure 7.1a. Thus, we expect the center hypothesis — i.e., the belief
that people move towards the city center and stay there for taking photos (see Section 7.3)
— to be a better explanation of human photowalking behavior than our baseline (uniform)
hypothesis. We use the center of Berlin from Table 7.1 and consider four different standard
deviations σ: 1km, 3km, 5km and 10km. The results are depicted in Figure 7.2a.

As expected, the results show that for all considered values of κ > 0 and all parameter-
izations of the hypothesis, the center hypothesis is more plausible than the uniform one
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(a) Center hypotheses
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(c) Weighted POI hypotheses
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(d) Proximity hypotheses
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(e) Proximate weighted POI hypotheses
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(f) Comparison between best hypotheses

Figure 7.2.: Comparison of homogeneous hypotheses on photo trails in Berlin. This
figure visualizes the results for our hypotheses on human photo trails in Berlin. First, for each
type of hypotheses at interest, we compare various parameter configurations (a-e). Then, in (f) we
compare the best hypotheses from each set. Overall (f), a combination of proximity and weighted
POIs provides the best hypothesis. This suggests that people prefer to subsequently take photos
at popular, yet proximate POIs in a city (cf. Section 7.4.1.1).
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(higher evidences). The best center hypothesis is based on σ = 3km and the worst on
σ = 10km. Standard deviations of 1km and 3km are mediocre and cross for increasing κ.
The initially high evidence values of 1km mean that this hypothesis covers an important
aspect of the data. The quickly dropping values, however, are an indicator that it also
fails to model important transitions outside the 1km radius. This is because with an
increasing concentration factor κ, HypTrails [453] decreases the tolerance for a hypothesis
(cf. Section 3.3.2). Contrary, for σ = 5km low values of κ show lower evidence, but it
does not drop as quickly, eventually resulting in higher evidence values than for σ = 1km.
This indicates that the 5km standard deviation covers most transitions, but fails to model
the strong focus on the center aspect.

Overall, we find that the center hypothesis is a reasonable explanation for photowalking
trails in Berlin. In detail, of the investigated standard deviations, 3km works best, while
1km is too specific and 5km is too broad.

Points of interest hypotheses. With regard to the POI hypothesis (see Section 7.3),
we consider five different standard deviations: 0m (only considering the grid cell the POI
is located in), 100m, 200m, 400m, and 800m. The results (see Figure 7.2b) suggest that
the POI hypothesis provides good explanations about how people photowalk a city as all
parameterizations indicate higher evidence compared to the baseline (uniform) hypothesis.
In detail, the results show that the POI hypothesis focusing on a single state (σ = 0km)
performs inferior to those POI hypotheses allowing their influence to spread. The two
rather close-ranged spreads 200m and 400m perform the best, implying that people indeed
move towards POIs. The worse performance of too narrow and too wide ranges is an
indicator that people tend to visit places and take photos of the place at a close range,
but not necessarily directly at the POI. For example, a minimum range might be required
to capture a large building in one picture.

Weighted points of interest hypotheses. The weighted POI hypotheses models more
popular POIs to have a stronger influence on transitions. For tractability, we focus on
the best spreading parameter σ for the unweighted POI hypothesis from the previous
paragraph, i.e. σ = 200m. Overall (see Figure 7.2c), the hypothesis that people prefer to
take pictures at places with many popular POIs (here, derived from Wikipedia) provides
a reasonable explanation for how people photowalk a city. By using online usage statistics
from Wikipedia (view counts), we can strengthen the evidence of the hypothesis by a
small — but significant — amount if we use logarithmic scaling.

Proximity hypotheses. For the proximity hypothesis (see Section 7.3), we use four
different standard deviations σ: 200m, 400m, 700m and 1.5km. Overall, the results shown
in Figure 7.2d demonstrate that the hypothesis that people prefer to consecutively take
pictures in their proximity captures an important aspect of the production of human
photo trails; σ = 700m produces the highest evidence for all considered values of κ > 0.
For standard deviations of 200m and 400m, a similar situation occurs as for the center
hypotheses with a standard deviation of 1km: They seem to concentrate their belief
on a too narrow proximity leading to decreasing evidence values for higher values of κ.
Contrary, the proximity hypothesis with σ = 1.5km is too broad, somewhat neglecting
the centralized character of the proximity aspect.
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Mixtures of hypotheses. To evaluate the mixture of the POI and the proximity
hypothesis (cf. Section 7.3.6), we focus on the logarithmically weighted POI hypothesis
with σ = 400m since it was one of the best performing hypotheses so far. This is combined
with different standard deviations for proximity, i.e., 100m, 200m, 400m, 700m and 1.5km.
The results shown in Figure 7.2e indeed demonstrate that adding the proximity aspect
to the POI hypothesis strongly improves the evidence of the corresponding belief how
people consecutively take pictures in a city. The best results can be achieved with larger
standard deviations σ, i.e., σ = 700m and σ = 1.5km.
We also investigated different parametrization for the mixture of the proximity and

the center hypothesis. The best parameter setting was a standard deviation of σ = 3km
for the center and a standard deviation of σ = 1.5km for the proximity hypothesis. We
depict the results for this hypothesis in the overal comparison in Figure 7.2f.

Comparison. For a direct comparison of the different hypotheses we are taking the
most plausible ones (best parameters) of each set as elaborated beforehand. The results
are shown in Figure 7.2f. We can see that the center and the weighted POI hypothesis
perform quite similar which may be due to the larger number of (important) POIs in the
city center. At the same time, the proximity hypothesis performs very well and combining
it with the other hypotheses improves them strongly. Indeed, the combination of the
proximity hypothesis and the weighted POI hypothesis provides the best explanation of
how people move around Berlin while taking photos. This result suggests that information
extracted from the social semantic web, in the form of concepts and usage statistics from
Wikipedia, allows for finding advanced explanations for human movement trajectories.

7.4.1.2. Los Angeles, London and New York

To further augment the results from Section 7.4.1.1, we analyze three more cities, namely,
Los Angeles (USA), London (United Kingdom) and New York City (USA). We show
similarities and highlight some differences between the cities. For a concise presentation,
we focus on the best parameter settings for each hypothesis. The best parameters were
determined separately for each city. Results are depicted in Figure 7.3. For most parts,
all hypotheses perform very similar and the best parametrizations are consistent. This
indicates that the hypotheses about photo trails in Berlin can be generalized to other
cities quite well, implying that some basic patterns exist that even hold across countries.
However, there are two exceptions which are worth mentioning. First, in Los Angeles

(see Figure 7.3c), the most plausible center hypothesis has a standard deviation of 10km
instead of 3km. This indicates that LA either has a very large center or none at all—
arguably, LA is a spread out city which may cause this divergence. Additionally, in LA
higher standard deviations for the POI hypothesis, i.e., 400m instead of 200m, are favored
compared to the other cities. Also, even the best performing hypotheses are strongly
decreasing with increasing κ. This further supports the idea that LA is structurally
different from the other cities. Second, the linearly weighted POI hypothesis in London is
superior to the logarithmically weighted one. This may be due to different view count
distributions and has to be further investigated in the future.
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(c) Los Angeles
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(d) New York City

Figure 7.3.: Comparison of homogeneous hypotheses on photo trails across cities.
This figure visualizes the results for our studies on human photo trails derived from Berlin (a),
London (b), Los Angeles (c), and New York City (d). We present a comparison of the best
instances for each type of hypotheses for each city. We can identify similar explanations across
cities, but there are some differences for LA and London (c.f., Section 7.4.1.2).

7.4.2. Subgroups with exceptional transition behavior

In the previous sections, we have studied the overall photowalking behavior of Flickr
users in several cities. However, many related studies indicate that human navigation
behavior is inherently heterogeneous (see Section 2.1.5). That is, there are multiple
processes responsible for the observed overall data. To study this phenomenon, we use
the photo trails over census tracts in Manhattan as described in Section 7.2.2.2 and
apply the SubTrails approach as introduced in Chapter 5. In the following, we cover the
corresponding experimental setup and report the results.

Experimental setup. For the following experiments, since SubTrails is not optimized for
large scale state spaces, we use the census tract data described in Section 7.2.2.2 focusing
on a more semantic variant of discretizing the continuous geo-spatial environment. To
augment the data for discovering subgroups, we elicit a wide range of describing attributes
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(a) All transitions (b) Transitions of
tourists

(c) Night transitions
(22–23 h)

Figure 7.4.: Visualization of exceptional photo walking behavior. This figure shows
transition probabilities from Central Park to other tracts in Manhattan for (a) the entire dataset,
(b) the subgroup tourists, and (c) the subgroup transitions during night time (22–23 h). Cool
colors (blue, green) represent small, warm colors (orange, red) high transition probabilities, see
the legend on the right hand side.

for each transition, i.e., the number of photos the respective user has uploaded from
Manhattan, the number of views the source photo of the transition received on Flickr,
as well as the month, the weekday and the hour this photo was taken. We add two
more features based on the user’s origin, that is, the tourist status and the nationality
(country). We consider a user to be a tourist if the time from her first to her last photo
does not exceed 21 days, cf. De Choudhury et al. [135]. Country information of a user
was derived from the location field in her user profile by extracting the country using a
combination of querying GeoNames9 and specialized regular expressions. The country
information was only available for about half of the users.

Based on these attributes, we use all attribute-value pairs for nominal attributes, and all
intervals obtained by equal-frequency discretization into five groups for numeric attributes.
Overall, this results in 163 selection conditions. With regard to the search space, we
focus on subgroups with simple descriptions, i.e., no combinations of selection conditions
are considered. For computing the interestingness measure, we use r = 1, 000 random
samples. We confirm our top results to be statistically significant on an α = 0.01 level
using the procedure presented in Section 5.2.2.

In a first experiment, we aim at discovering subgroups with different transition models
compared to the entire data. Additionally, we investigate subgroups which match and
contradict the proximate POI hypothesis (see Section 7.3.6), respectively. This hypothesis
has been shown to be one of the best hypotheses for explaining movements in Section 7.4.1
(even if on a different state space).
Results. Table 7.3 reports our results: the most exceptional subgroups in comparison
with the overall data (see Table 7.4a) describe transitions by users that take either very
9http://www.geonames.org/
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Table 7.3.: Top subgroups of with exceptional photo walking behavior. For each sub-
group, we show the number of instances covered by this subgroup, the interestingness score qtv,
the weighted total variation ωtv and the unweighted total variation ∆tv.

(a) Comparison to the overall dataset
Description # Inst. qtv (score) ωtv ∆tv

# Photos > 714 76,859 103.83 ± 2.41 42,277 106.68
# Photos ≤ 25 78,254 88.83 ± 2.07 37,555 141.78
Tourist = True 76,667 75.42 ± 1.79 33,418 148.64
Tourist = False 310,314 75.00 ± 1.60 33,418 16.92
Country = US 163,406 64.47 ± 1.39 44,822 70.97
# Photos = 228-715 77,448 46.10 ± 1.02 33,214 115.65
Country = Mexico 2,667 33.22 ± 0.82 3,575 122.83
# PhotoViews > 164 79,218 31.58 ± 0.74 31,461 107.84
# PhotoViews < 12 76,573 30.54 ±0.71 30,881 110.83

(b) Comparison to the proximate POI hypothesis, contradicting
Description # Inst. qtv (score) ωtv ∆tv

# Photos ≤ 25 78,254 64.85 ± 1.37 110,124 221.07
# Photos = 26–81 77,003 23.41 ± 0.53 99,646 207.21
Hour = 22h–23h 14,944 18.26 ± 0.43 20,526 215.69
Hour = 23h–0h 11,726 17.42 ± 0.37 16,404 208.91
Hour = 21h–22h 17,806 16.52 ± 0.33 23,951 211.34
Tourist = False 310,314 16.09 ± 0.35 379,676 185.13
Hour = 0h–1h 9,693 15.12 ± 0.33 13,590 215.42

(c) Comparison to the proximate POI hypothesis, matching
Description # Inst. −qtv (score) ωtv ∆tv

# Photos > 714 76,859 58.59 ± 1.30 80,690 164.16
# PhotoViews < 12 76,573 21.56 ± 0.50 88,948 185.78
Hour = 12h–13h 25,022 14.04 ± 0.32 29,590 187.84
# Photos = 228–714 77,448 10.63 ± 0.23 91,877 193.57
Tourist = True 76,667 10.60 ± 0.24 91,214 197.79
Hour = 14h–15h 27,420 10.51 ± 0.25 33,028 194.40
Hour = 11h–12h 20,323 9.18 ± 0.21 24,613 196.99
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many (more than 714) or very few (less than 25) photos. We explain this by the fact that
users with overall fewer photos are more likely to travel a longer distance before taking
another picture, resulting in more long distance transitions. The next two subgroups
Tourist=True and Tourist=False suggest that tourists continue their trip to different
locations than locals, e.g., as they are more interested in touristic attractions. Further top
subgroups with deviating transition models involve the number of views pictures receive
on Flickr and the country of origin.

Table 7.4b and Table 7.4c display the top subgroups that contradict the proximate POI
hypothesis, respectively match it. We observe that users with small amounts of pictures
and non-tourists do not move as the investigated hypothesis suggests (possibly hinting at
the same user population). Also, night time mobility (roughly 21h – 1h, see the result
table for exact subgroup ordering) does not match this hypothesis, maybe due to the
closing of touristic attractions at night times. By contrast, tourists and users with many
pictures as well as transitions at midday are especially consistent with the proximate POI
hypothesis.
Although we discover these exceptional subgroups from the large set of candidates

automatically, it has to be investigated post-hoc how the transition models deviate. In
that direction, we studied the subgroup Tourist=True in detail. For that purpose, we
first computed the source state with the most unusual distribution of target states, i.e.,
the row that contributes the highest value to the weighted total variation qtv. For the
tourist subgroup, this state (tract) corresponds to the central park. We then visualized
the transition probabilities for this single state for the entire dataset and the subgroup
in Figure 7.4 using the VizTrails visualization tool (see Section 6.2). It can be observed
that tourists are less likely to move to the northern parts of Manhattan, but are more
likely to take their next picture in the city center or at the islands south of Manhattan.
For a second investigated subgroup, i.e., the subgroup of transitions between 22h and
23h, this effect is even more pronounced as almost no transitions from the central park to
the northern or north-eastern tracts can be observed. Note, that this visualization only
covers the transition probabilities from a single state, not the overall transition matrix
used for detecting interesting subgroups.

7.4.3. Tourists vs. locals

Section 7.4.2 showed that there are subgroups whose transition behavior differs exception-
ally from the overall data. One prominent example were the subgroups of tourists and
locals. In this section, we study these two groups and their contribution to explaining
navigation. In particular, we hypothesize that the navigation behavior of the population
can be explained better when accounting for the inherent differences of tourists and locals.
That is, we believe that tourists take their next picture at a much closer location than
locals (and residents of a city). This can have several reasons including for example that
tourists are commonly much more interested in their surroundings than locals, that they
exhibit stronger affinity to points of interest (POIs), or that they generally take more
photos. Similar to Section 7.4.2, we investigate this theory based on the photowalking
trails over census tracts in Manhattan as described in Section 7.2.2.2 and apply the
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MixedTrails approach as introduced in Chapter 4 to formulate heterogeneous hypotheses
to explain the observed transition behavior.
Experimental setup. As a general model for tourists and locals we use a combination
of spatial proximity and a preference for POIs (cf. Section 7.3.6) because in Section 7.4.1
this hypothesis was found to be one of the best explanations for the transitions of Flickr
users. To account for the difference of tourists and locals, we build two different transition
probability matrices that we call φnear and φfar, which feature different parameterization
of the proximate POI hypothesis (cf. Section 7.3.6). In particular, we fix the influence
radius of POIs to 400m and set the standard deviation of the proximity factor to 2.5km
(φnear) and 5.0km (φfar). Note that, here, we use larger radii than in Section 7.4.1 because,
instead of considering a fine-grained grid-based discretization, we use the coarser census
tracts as the underlying state space.

To classify users as tourists or locals, we use the time difference between her first and
her last photo in the data, cf. De Choudhury et al. [135]. In that regard, we consider
different group assignments (cf. MixedTrails, Chapter 4): (i) a baseline γone that puts all
transitions into one group (regardless of being a local of a tourist), (ii) a deterministic
grouping γdet by defining tourists as users with a trail duration of 21 or less days, and
(iii) a smooth distinction between tourists and locals around 21 days by using a sigmoid
function sig(t) = 1/1+e−t resulting in probabilistic group assignments γprob.

We combine these three group assignments and transition probability matrices to form
five (partially heterogeneous) hypotheses according to the MixedTrails paradigm:

• Hnear = (γone,φnear)

• Hfar = (γone,φfar)

• Hdet: tourist=near = (γdet, (φnear,φfar))

• Hprob: tourist=near = (γprob, (φnear,φfar))

• Hprob: tourist=far = (γprob, (φfar,φnear))

For example, the last hypothesis Hprob: tourist=far expresses a belief that there are two
groups — locals and tourists — in the data, and the longer the sequence of a user is (in
days), the more likely she is to be a local. Furthermore, this hypothesis assumes that
tourists are more likely to have a longer distance to the next photo location than locals.
We additionally added a homogeneous uniform hypothesis as a baseline that assumes that
all transitions are equally likely and that no groups exist.
Results. Figure 7.5 shows the results. The uniform hypothesis is substantially less
plausible than all proximate POI based hypotheses. Among the latter, we see that for
smaller concentrations factors homogeneous groupings perform better, which indicates
that in general the split into tourists and locals by itself does not produce particularly
distinct movement behavior. However, for increasing concentration factors κ, it turns
out that the hypothesis Hprob: tourist=near works best, which uses a probabilistic group
assignment in combination with the belief that tourist take their next photo at a more
near-by location with a close POI while locals choose locations with higher distances more
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Figure 7.5.: Comparison of heterogeneous hypotheses on photo walking behavior.
We model the navigation behavior between tracts in Manhattan based on photo trails on the
social photo-sharing platform Flickr. Overall, we have not found hypotheses explaining the data
well as indicated by the strongly decreasing marginal likelihoods. However, those we evaluated
are better than the baseline, i.e., the uniform hypothesis. The best one (prob: tourists=near)
assumes that tourists are more prone to move to close by tracts than locals. Here, MixedTrails
allows for modeling uncertain classification of tourists which covers the underlying processes
better than a deterministic group assignment (det: tourists=near).

often. By contrast, a deterministic split γdet does not cover the uncertainty of classifying
tourists and locals.
Overall, this study indicates that further investigating a combination of tourists and

locals to explain the photowalking behavior of Flickr users may lead to hypotheses that
better explain the overall transition behavior.10 Also, this case study illustrates how
MixedTrails can be used to incorporate heterogeneous aspects — such as the difference
between tourists and locals — into navigation models specifically featuring probabilistic
group assignments.

7.5. Discussion

In this case study, we have conducted extensive experiments to gain a better understanding
of the underlying processes that are employed when people take photos while moving
through cities. We dedicate this section to discuss characteristics specific to our approach
and corresponding results, and highlight some potential limitations.

Data characteristics. Next, we shortly discuss four relevant aspects regarding our data:
(i) splitting photo trails due to time constraints, (ii) observation sparsity, (iii) Flickr
movement characteristics and (iv) state granularity:

10When comparing the plots from Figure 7.5 to the results in Section 7.4.1 please beware that the state
space differs. Thus results are not directly comparable.
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(i) We have considered the sequence of all photos of a user as a single photo trail
regardless of the time span in between two photos. However, if such a time span is
too long (e.g., a week or even a few hours), the corresponding two photos are most
likely unrelated. Thus, in additional experiments, we have removed transitions with
time intervals exceeding 6 or 24 hours respectively. The results are very similar to
the ones reported in Section 7.4.1.

(ii) Since we are using grids with 200m by 200m cells over relatively large areas,
the number of observations for corresponding transitions is limited. However, as
HypTrails automatically focuses on observed states, the sparsity of the data does not
randomly bias our results. Thus, no further testing of possibly derivable predictors
is necessary since all available information is drawn directly from the data via
Bayesian inference.

(iii) Due to our focus on studying Flickr, we are only able to make judgments about
behavioral aspects that emerge when people move through a city and take photos
as captured by Flickr. Studying other forms of mobility data might reveal different
results. However, we assume that certain behavioral aspects are similar, regardless
of the type of data we look at as suggested by Cho et al. [116]. This may be
verified, for example by contrasting different cities or by considering different kinds
of movement data, e.g., social check-ins, call details records, or business reviewing
data.

(iv) We have focused on intra-city behavior using 200m by 200m grids. However,
studies in the geo-spatial context have recognized the “modifiable areal unit problem”
(MAUP) [257, 534] which refers to the problem of choosing appropriate areal units.
Studying the stability of our results with regard to various unit settings may yield
further insights into the studied processes. Similarly, we might observe different
movement patterns if we extended our scope of interest. That is, by focusing
on cities, we constrain our studies to a small geographic area which might favor
proximity based hypotheses. If we extended the scope, for example to a country
or continent level, the results will most likely largely differ. However, then, other
types of hypotheses may be more plausible to study.

Choice of hypotheses. The observations in this work are limited by our choice of
which hypotheses to study and how to express them; they have mostly been motivated by
related work. Many other kinds of hypotheses are conceivable and can be investigated
with HypTrails and our data. We suggest some potential candidates: (i) A hypothesis
expressing the belief that a river is a natural barrier in a city. (ii) Also, district boundaries
may be some kind of barrier. Additionally, (iii) demographic aspects (such as crime rates)
might influence movement patterns in a city. And finally, (iv) hypotheses based on the
notion of intervening opportunities [378] have not been tested yet.
Tourists and other heterogeneous aspects. We provide some preliminary case
studies regarding the heterogeneous nature of human navigation behavior in Sections 7.4.2
and 7.4.3, mainly focusing on the user groups of tourists and locals. In particular, while
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our hypotheses on tourists and locals in Section 7.4.3 were better than the uniform
baseline, they did not explain the data well.

However, other studies also suggests that the photographing behavior on Flickr differs
between tourists and residents of a city [135, 206]. For example, De Choudhury et al. [135]
argue that residents are not under the direct pressure of visiting as many POIs within a
certain time span as tourists are. This implies that hypotheses similar to the ones we
formulated in Section 7.4.3 should be able to explain the observed photo trails better.
Using more advanced spreading models (as opposed to a Gaussian spread) or employing a
different state space may yield superior results. Similarly, a number of other user groups
or sub-groups, such as visitors from different countries, or users from different generations,
may be interesting to study. Finally, seasonal effects are also worth investigating. We
leave these ideas to future work.

7.6. Related work

For a general overview on human navigation behavior in the context of human mobility
and navigation on the web, we refer to Chapter 2. However, there are also more specific
studies concerning human navigation behavior in the context of Flickr: For example,
De Choudhury et al. [135] aimed at leveraging photo trails for automatically constructing
travel itineraries through cities by utilizing the popularity of POIs. Travel routes have
also been derived from other photo-sharing platforms like Panoramio [332]. Similarly, Tai
et al. [476] used past landmarks photographed by users for recommending sequences of
new landmarks derived from sequential information by other users on Flickr. Furthermore,
Girardin et al. have conducted several studies on Flickr photo trails. In Girardin et al.
[205], they studied digital footprints and in Girardin et al. [206] they focused on tourist
dynamics based on concentrations and spatio-temporal flows revealing popular points of
interests, density points, and common trails tourists follow. Also, Beiró et al. [47] used
Flickr data to evaluate a method for predicting human mobility based on the gravity
model (cf. Section 2.1.3). Apart from trails and mobility, Flickr has also been studied in
other contexts like tagging [128, 342, 448] and social network properties [96, 360].

7.7. Conclusion

In this case study, we investigated and compared hypotheses about urban photo trails
across different cities by analyzing sequences of geo-tagged photos uploaded to the
Flickr platform using HypTrails [453], SubTrails, and MixedTrails (see Section 3.3.2
and Chapters 4 and 5, respectively). For this, we used discretization to transform
the continuous geo-spatial observations into a discrete state space. Furthermore, for
the informed specification of hypotheses, we utilized additional data sources such as
DBpedia, YAGO, and view counts of Wikipedia articles which allowed us to find advanced
explanations for human movement trajectories. Our results suggest that cities share
interesting commonalities and differences. For example, while proximity was an overall
good explanation across all cities, for the city of Los Angeles we observed movement
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patterns on a different scale. Most prominently, our results suggest — at least on our
data — that humans seem to prefer to consecutively take photos at proximate POIs that
are popular on Wikipedia. Finally, we found exceptional sub-processes in the navigational
behavior of Flickr users. In particular, we studied the difference between tourists and
locals incorporating their characteristic behavior into a heterogeneous hypothesis which
explained the observed navigation better than the homogeneous hypotheses we compared
against. For the interactive exploration of location sequences and hypotheses, we also
refer to our tool VizTrails (cf., Section 6.2).

In future work, we plan on extending our experiments by investigating additional cities.
Furthermore, it would be interesting to expand the current city-level analysis to a larger
scale, e.g., trails across different cities or countries.
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8. Navigation processes during a
participatory sensing campaign

The data collected via the EveryAware platform (Section 6.3.2) presents the opportunity
to study human navigation behavior in a seldom covered context. That is, we study
exploration processes for a participatory sensing campaign on air pollution. For this, we
report results from our previously published article on the participatory sensing campaign
“APIC” [457]. However, instead of also covering aspects like subjective perception and
guesses of black carbon, we mainly focus on navigation and mobility related results. We
furthermore conduct a preliminary study on corresponding navigation hypotheses using
the HypTrails approach (cf. Section 3.3.2) for which we introduce a novel approach for
formulating hypotheses tailored to continuous movement data.

8.1. Introduction

In Section 6.3, we have introduced the EveryAware platform for collecting mobile sensor
data providing a framework for participatory sensing campaigns, quantified self projects,
or Internet of Things applications. By explicitly supporting mobile measurements, Every-
Aware provides a unique source for studying human navigation behavior.
Problem setting. In this case study, we analyze human navigation behavior during
the AirProbe International Challenge (APIC) which was held as part of the EU project
EveryAware1. APIC was a participatory sensing campaign mapping air quality in the
form of black carbon measurements across different cities.
Approach. In this context, we particularly focus on two aspects of human mobility
relevant to participatory sensing campaigns, i.e., activity and coverage. The former is
concerned with how much effort people put into the campaign and the latter quantifies the
spatial and temporal coverage of the measurements. This allows us to extract meaningful
information with regard to the behavior and goals of the users. To further study the
behavioral processes of the participants, we also specifically analyze their navigation
behavior by using the HypTrails approach [453] (cf. Section 3.3.2).
Contribution and findings. Overall, we employ the collected data for analyzing and
studying user interests, activity patterns, as well as navigation behavior during the
challenge. We find varying coverage characteristics for different locations and campaign
settings. Furthermore, both, coverage and measured pollution levels, indicate that the
participants had a tendency to monitor familiar areas when there was no restriction while
measuring more polluted spots at the same time. And finally, similar to the coverage
1http://everyaware.eu, accessed: December 2017
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characteristics, the navigation behavior shows differences with regard to the tasks given
by the campaign.

Structure. In the following, we first cover background information on the APIC challenge
(Section 8.2) and summarize the collected data (Section 8.3). Then, we go over several
results derived from the collected data including activity and coverage statistics as well
as navigation behavior in Section 8.4. We conclude this case study in Section 8.5.

8.2. The AirProbe International Challenge

The AirProbe International Challenge (APIC) challenge was aimed at studying the
behavior and perceptions of citizens involved in monitoring air quality, during a large
scale international test case. This was organized simultaneously in four cities: Antwerp
(Belgium), Kassel (Germany), London (UK) and Turin (Italy). In this test case a web-
based game, air quality sensing devices, and a competition-based incentive scheme were
combined to collect both, objective air quality data and data on perceived air quality, in
order to analyze participation patterns and (changes in) perception and behavior of the
participants. The test case was organized as a competition between the cities to enhance
participation.

During this test case, volunteer participants were asked to get involved in two activity
types. The first one — which we focus on in this case study — consisted of using a
sensing device (sensorbox) to measure air pollution (black carbon (BC) concentrations)
in their daily life; generating what we call objective data. The second activity was playing
a web game, where volunteers were asked to estimate the pollution level in their cities by
placing flags (so called AirPins) on a map and tagging them with estimated black carbon
(BC) concentrations on a scale from 0 to 10µg/m3; resulting in subjective data on air
pollution (perceptions). Volunteers involved in the measuring activities were encouraged
to play the game and bring other players as well (create a team).
The two data types allow for an analysis of user behavior and perception throughout

the challenge. To enable this, the test case was composed of three phases. In phase 1,
only the online game was available, so we could obtain an initial map of the perceived air
pollution. In phase 2 the measurements started in a predefined area in each of the cities
(corresponding also to the web game area), with the web game running in parallel. Phase 3
introduced a change in the game, so that players could acquire limited information about
the real pollution in their cities in the form of sensor box measurements averaged over
small areas (so called AirSquares). At the same time, measurements were continued, this
time without a restriction of the area to be mapped. In phase 2 and 3, the volunteers
received points depending on the spatial and temporal coverage they achieved with their
measurements. Additionally, incentives in the form of prizes were given at the end of each
phase to the best teams/players (please see the supplementary file S1 of Sirbu et al. [457]
for more details).

For the first time, to our knowledge, an end-to-end scientific platform for participatory
air pollution sensing was used, as developed as part of the EveryAware project. This
includes a dedicated sensor box for measuring black carbon (BC), a corresponding Android
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application for managing the data from sensor box, a framework for collecting, analyzing
and visualizing the sensor data, and a web platform for the online game. For more
information on the quality and representativeness of the collected air quality data as well
as an in-depth analysis see Sirbu et al. [457]. And, for more information on the data
collection platform EveryAware also see Section 6.3.

8.3. Data

We employ the mobile sensor data collected during the APIC challenge as introduced in
Section 8.2. Since, in this case study, we focus on human navigation and behavior, we skip
the analysis of perceptions collected via the online game.2 This allows us to concentrate
on phase 2 and 3 (of the three phases) of APIC where air quality was actively measured
by volunteers carrying the EveryAware sensorboxes [162].

The APIC challenge has successfully involved 39 teams of volunteers in 4 European
cities (Antwerp, London, Kassel, Turino), gathering 6,615,409 valid geo-localized data
points during the second and third phase of the challenge (the measuring device collects
one data point per second). Phase 2 was held from the 4th to the 17th of November
2013 and phase 3 took place from the 18th of November to the 1st of December. An
additional 3,326,956 data points were uploaded to our servers in the same period but were
not included in the analysis since they were missing complete GPS information. Some of
these measurements contained labels (tags), with 742 geo-localized overall tags coming
mostly from one location of the challenge (London).

Additional information on perception of pollution has been extracted from the online
game. The platform had 288 users in total, over six weeks, 97 of which played the game
at least ten times. Their activity resulted in 70,758 AirPins at the end of the test case,
which were used to assess perceived pollution levels by Sirbu et al. [457].

8.4. Results

Volunteer involvement and activity levels are among the most important elements in
participatory monitoring campaigns, since these can determine the success of a campaign.
Large activity is required for acquiring meaningful data including both objective measure-
ments, for analyzing of the environment itself, and subjective information, for analyzing
of social behavior. In the following we discuss several navigational aspects including the
activity levels of the participants, spatial and temporal coverage, as well as the goals
and strategies of volunteers while measuring air quality. We also conduct a study on
navigation behavior investigated by applying the previously covered HypTrails approach
(see Section 3.3.2).
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Figure 8.1.: Volunteer activity patterns during the APIC case study. The subplots in
the top row show daily (weekends shown in red) and hourly measurements by volunteers. The
distribution of the number of measurements performed per team is depicted at the bottom-left.
We also show the distribution of the web game activity among players in the bottom-right subplot,
for reference. The distributions are displayed by ranking the volunteers by activity and then
displaying the number of measurements (measuring activity) and AirPins (webgame activity) in
descending order, using a rank-frequency plot.
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8.4.1. Activity

With regard to general user activity, Figure 8.1 shows general participation patterns.
Further details about the data from the web game as well as the participation patterns
for each of the four cities of APIC, can be found in [457] and its supplementary file S1.
The daily number of measurements show larger activity during the week compared to
weekends, with almost twice the activity in the peak days (Wednesday/Friday). This
indicates that the volunteers were strongly interested in monitoring their exposure in
relation to the routine activities of the week, which probably include commuting and access
to highly polluted environments. It might also mean that it was easier for participants
to monitor as part of their weekly routine whereby at the weekend monitoring would
require more effort as (for example) it would not comprise part of their commute, or may
have impacted on other leisure activities that they wanted to carry out. Daily patterns
(hourly measurements) indicate a peak in activity in the afternoon, around 5 pm, again
probably due to afternoon commuting. However, measurements are performed at all
hours of the day, indicating the presence of very dedicated volunteers. In fact, the total
number of measurements per team indicates several teams with very high activity levels,
with the most active team reaching almost 1 million points (equivalent to over 270 hours
of measurements). However, team activity was very heterogeneous, with some teams
collecting much less data than the others. This heterogeneity was found within each
city (e.g., the highly active teams are spread over three of the four cities), indicating
that differences in activity were in general based on personal predisposition and not
location. However, some of the heterogeneity between the cities can also be explained
by the differences in instructions, emphasis, and incentives (also see the supplementary
material file S1 of Sirbu et al. [457] for more details, e.g., on incentives).

8.4.2. Coverage

Besides activity in terms of number of measurements, another important aspect of
participatory sensing domains is coverage, both in space and time. As we have seen
before, measurements have been performed at all hours of the day and days of the week.
However, usually not all areas and time frames are covered equally. Here we analyze
aspects of coverage (for more details on individual locations please see the supplementary
file S1 of Sirbu et al. [457]). In order to compute the coverage, the area of each of the
four participating cities was divided into 10 by 10 meter squares (tiles).

8.4.2.1. Spatial coverage

In the following, one square was considered “spatially covered” if at least one measurement
was performed within it. Figure 8.2 shows how the number of squares covered grows as
users perform more measurements, both overall and for each phase individually. The
volunteers had different tasks in the two measuring phases (phase 2 and 3 of the test

2For a analysis on the recorded perceptions we refer to the work of Sirbu et al. [457]
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Figure 8.2.: General space coverage data. Left panel: growth of the number of squares
covered for the entire challenge. Right panel: growth of the number of squares covered per phase,
in a log-log plot.

case). In phase 2, they had to concentrate on covering as much as possible of a specific
area, while in phase 3 they could explore any area they wanted.

In this context, Figure 8.2 indicates that space coverage grows steadily with the number
of measurements, meaning that users continue to explore new areas over the course of the
challenge. However, while at the beginning of the challenge the growth is fast, it decreases
with time. This indicates less exploration as the challenge evolves, due to the fact that
volunteers measure at the same location multiple times. Also the restricted measurement
areas (especially in phase 2) may explain this effect. When looking at individual phases,
it appears that during phase 2 space coverage was much better than in phase 3. This does
indeed mean that volunteers displayed a better exploratory behavior at the beginning
and when asked to cover a specific area of the city, compared to when they were asked to
map any place they wished. In the latter case, they went for their daily routes that were
not so extensive, and did not explore further. For both phases the growth of the space
coverage follows a power-law, with exponent 0.73 in phase 2 and 0.79 in phase 3. This
suggests that, although on the short term, the space coverage in phase 2 is larger, in the
long run the strategy of phase 3 might actually produce better coverage. However, the
restricted time frame of our challenge can not provide further proof for this hypothesis.

8.4.2.2. Temporal coverage

Since pollution levels vary both in space and time, it is important to have many mea-
surements at the same location. So, for each tile, we also look at how measurements
are spread in time, i.e., time coverage. First we separated the working days (Monday to
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Figure 8.3.: General time coverage data. Time coverage per phase and overall. The inset
shows an enlarged view of the leftmost part of the plot (top ranked squares).

Friday) from the weekends (Saturday and Sunday). Each of the two groups were divided
into 4 further categories, by setting time thresholds at hours 08:00, 14:00, 18:00 and
23:00. The entropy of the resulting sets was computed. For each square, we obtained
the fraction fi of measurements in each category i as the ratio between measurements
falling into that category and the overall number of measurements in that square. Then
the entropy for that square is S = −

∑8
i=1 fi log2 fi. A higher entropy indicates a better

spread of measurements in time. Figure 8.3 shows the distribution of the entropy for all
squares covered in a rank-entropy plot (squares are sorted descending by entropy and the
entropy values plotted for each square). A few squares had a very good time coverage.
These correspond to hubs in the four cities such as leisure locations (e.g., Königsstrasse
in Kassel), main squares (e.e., Piazza Castello in Turino), and transportation hubs (e.g.,
the Barbican and Bank subway exits in London). At the other extreme there are many
squares (more than half) that have been covered only in one time slot (entropy is 0).
Between the two extremes, time coverage is dropping fast.

The curves display jumps and it appears that squares can be divided into sets based on
time coverage. One first set (rightmost) includes those squares that have measurements
only at one time of the day (entropy 0), which is followed by those covered in 2 time slots,
ending with those that are covered at all times of the day (leftmost). Within each set,
coverage decays differently. While for the highly covered squares decay appears to be
exponential (as plotted in the inset), this becomes slower as the coverage decreases, with
curves resembling polynomial decay. This hints at different measurement processes, i.e., a
stationary process were sensorboxes are left at the same location for extended periods
of time, routine measuring where the sensorbox is used on routinely visited paths (e.g.,
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Figure 8.4.: Heatmap representation of time and space coverage for phase 2. Red
dots represent strongly covered tiles. Only the mapping area for each city is represented. The
cities are, from left to right: Antwerp, Kassel, London and Turin.

Figure 8.5.: Heatmap representation of time and space coverage for phase 3. Red
dots represent strongly covered tiles. The entire area of the four cities is represented. The cities
are, from left to right: Antwerp, Kassel, London and Turin.

from home to work and back), and an explorative process probably in remote areas were
a repetitive coverage is unlikely. Further investigation is necessary to confirm and explore
the characteristics these processes.

When comparing the two phases, time coverage in phase 2 is much better overall than
in phase 3. This indicates that volunteers not only explored more in space, but also in
time, during phase 2, while in phase 3 they followed their daily schedule which resulted in
poor time coverage. This underlines again the importance of giving volunteers a specific
mapping area in order to obtain a better measurement spread.

8.4.2.3. Overall coverage

The overall coverage results are also displayed as spatial heat maps in Figure 8.4 (phase
2) and Figure 8.5 (phase 3). These show the areas of the four cities (mapping area for
phase 2 and the entire city for phase 3) with the covered tiles. Bright colors correspond
to higher time coverage, with bright red indicating the locations with most measurements.
It is clear that the mapping area (phase 2) is much better covered than others (phase 3),
with a few clear locations containing many measurements. These mainly correspond to
landmarks and main roads in the four cities, as discussed earlier.
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Figure 8.6.: Overall pollution levels compared between the two phases of APIC. The
distribution of BC levels are shown for the two measuring phases of the challenge. The inset
shows the same plot but with a logarithmic vertical axis, to emphasize the tail of the distribution.

8.4.3. Goals and strategies

The measured BC levels can also provide useful insight into the aims and strategies of
the volunteers during the challenge. To this end, we can examine how these change
from phase 2 to phase 3. Thus, Figure 8.6 shows graphs of BC levels measured in the
two phases, and we can observe larger BC values in phase 3 (the distribution is shifted
to the right). A Kolmogorov-Smirnov test was performed to test whether differences
are significant and a p-value of 2.2e-16 was obtained, confirming the difference. When
volunteers can freely choose where to take measurements, it appears that they primarily
target more polluted areas. When the mapping area is restricted, they tend to have a
more systematic approach and cover lower pollution levels as well. One may argue that
pollution levels may change naturally from one day to another, so the shift we see could
be due to a higher average pollution level from phase 2 to phase 3. However, a comparison
with reference data seems to suggest that this is not the case (cf., supplementary material
S1 of Sirbu et al. [457], where we also study additional comparisons for each location).

8.4.4. Navigation behavior

In the previous sections, we have studied activity, coverage, as well as goals and strate-
gies of the APIC participants using different forms of aggregate statistics. While the
corresponding observations already provide some information on the navigation strategies
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Table 8.1.: Bounding boxes used to define grids for discretizing the APIC city areas.
min lon. min lat. max lon. max lat.

Turino 7.6017 45.0080 7.7336 45.1326
Kassel 9.3454 51.2533 9.5650 51.3617

in the context of APIC, this section specifically aims at studying hypotheses about the
corresponding underlying navigational processes. We are particularly interested in the
differences between phases 2 and 3, where the sensorbox users have been observed to
behave differently in the previous sections.

To this end, similar to Chapter 7, we use the HypTrails approach [453] (cf. Section 3.3.2)
to formulate and compare navigational hypotheses which we compare across phase 2 and
3 of APIC. In particular, we focus on hypotheses taking into account the street network
of the cities and hypothesize that depending on the phase different types of streets are
preferred.
Thus, in the following, we first formulate hypotheses with regard to the geo-spatial

navigation behavior in the context of APIC (Section 8.4.4.2), and then evaluate and
compare them on the mobile sensorbox data (Section 8.4.4.3).

8.4.4.1. Data

Trails. The underlying data for studying hypotheses on human navigation behavior in
the context of APIC is the same as for the previous experiments (Section 8.3). In order
to derive “clean” trails, we first apply several pre-processing steps: We first select all
measurements where an accuracy is given and remove all measurements with a value
above 10. Then we group the measurements by device id and sort them by their recording
time to attain one trail for each sensor box. Then, in order to ensure correctly functioning
sensorboxes which take one measurement per second, we split these trails whenever the
time difference (> 2sec), the distance (> 100m), or the speed (>50km/h) between two
consecutive measurements is greater than a given threshold.
Then, we generate a discrete state space — which is a requirement to apply the

HypTrails approach — similar to our coverage studies in Section 8.4.2. In particular, we
employ a 200m by 200m grid based on the bounding boxes3 as listed in Table 8.1. We
map the points of each trail to the corresponding grid cells and then (analogously to
Section 7.4.1) remove all self-transitions. Afterwards we filter all trails which contain only
a single entry.

Road network. For the hypotheses in Section 8.4.4.2, we use the road network of each
city. We extracted these networks from OpenStreetMap4 for each city separately from
bbike.org5. Using this data we extract roads from the osm_world_line table and only

3These bounding boxes are based on the corresponding woeid ids on the town level. For example:
https://www.flickr.com/places/info/725003

4https://www.openstreetmap.org/
5http://download.bbbike.org/osm/bbbike/, file date: 10.08.2017
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retain entries where the field name, i.e., the name of the road, and the field highway,
which defines the type of the road, are not null in order to concentrate our hypotheses
in Section 8.4.4.2 on roads that can be tracked across cells.

8.4.4.2. Hypotheses

Using the HypTrails framework [453] (cf., Section 3.3.2), in this section, we formulate
several hypotheses modeling different aspects of navigation processes in the context of
APIC. To this end, analogously to Section 7.3, we define transition probability matrices
φ over grid cells as transition functions P̄ to represent hypotheses.
The uniform hypothesis and adjacency. As in our previous case study in Section 7.3,
the uniform hypothesis P̄uniform(sj |si) = 1 can be considered as one of the most uninformed
hypotheses. It states that all target/destination cells, not matter the distance, are equally
likely to “jump” to next. This provides a baseline every other (informed) hypothesis
should be able to outperform. However, since our measurements are continuous (one
sample per second), and we are using a state space with 200m by 200m grids, it becomes
apparent that, given the current grid cell, the next measurement can only be recorded
in one of the adjacent cells.6 Consider for example the gray cell in Figure 8.7a as the
current cell. Only the cells in its immediate vicinity are candidates to navigate to. Thus,
we also define the adjacency hypothesis modeling this aspect. In particular we define
adji(j) to return 1 when the cell sj is one of the adjacent cells of cell si (see the eight
white cells in Figure 8.7a), and 0 otherwise. Then the adjacency hypothesis is defined as

P̄adjacency(sj |si) = adji(j) (8.1)

Road counts. We further hypothesize that users move according to the road network.
That is, given the current cell, we belief that the user will follow some road to one of
the adjacent cells. We model this as follows: For each cell we extract the roads present
in that cell. Then, given the names of the roads Ri of cell si, we count the number of
roads ri,j of all the adjacent cells sj which are also in cell si, i.e., ri,j =

∑
x∈Ri∩Rj 1. This

represents the intuition that the more the roads between the source cell si and destination
sj overlap, the more likely a user will move to sj . For an illustration, see Figure 8.7a:
The cell below the top-right cell contains three roads also present in the grey source cell.
Thus, a citizen will more likely go to that cell than to the top-right cell containing only
one road also present in the (grey) source cell. We formally define the corresponding
hypothesis as:

P̄roads(sj |si) = ri,j · adji(j) (8.2)

Footway and residential preference. With regard to phase 2 and phase 3 of APIC,
we hypothesize that there is difference in navigation behavior. For example, we observed
6With regard to the notion of global and local hypotheses as introduced in Section 7.3, the limitation of
transitions to adjacent cells results in only local hypotheses. This is because the transition probability
distribution for each state is unique, i.e., local.
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Figure 8.7.: Comparison of baseline hypotheses on the APIC data. In (a) we illustrate
how the road network is used to derive hypotheses preferring neighboring states with connecting
roads. It shows a grid over a road network. The bold lines are residential roads, and the thin
lines are footways. The number in each cell represents the count of the roads which connect to
the current (grey) cell, i.e., zeros are left out. The higher the numnber of a cell, the higher the
probability to move to that cell. Only adjacent cells are considered. In addition to simple counts,
residential roads (thick lines) as well as footways (thin lines) can be weighted differently as done
in Section 8.4.4.2. (b) shows the performance of baseline hypotheses illustrating that preferring
adjacent cells is the more plausible baseline in a scenario of continuous trails.

changes in explorative behavior between phase 2 and phase 3 in Section 8.4.2. To address
these characteristic properties, we investigate whether the type of the road users prefer to
follow changes between the different phases. In this case study, we specifically focus on
residential roads, as mostly found in cities, and footways, which are exclusively reserved for
pedestrians and bicycle drivers.7 Note however, that footways often are found alongside
roads, including major roads.
Now, to model a preference for a specific road type, we weigh the different roads

individually. Starting with the residential category, let residential(x) be 2 if x is a
road of the category residential and 1 otherwise. Then, we define the weighted sum
wresidential
i,j =

∑
x∈Ri∩Rj residential(r) to represent the likelihood to move from cell si to

sj , where the residential roads are twice as important as all other road types. Consider,
for example, Figure 8.7a where residential roads are bold and footways are thin. Using
wresidential
i,j instead of ri,j , the weight of the cell below the top-right cell would be four

instead of three. Formally, we define the hypothesis preferring residential roads as

P̄residential(sj |si) = wresidential
i,j · adji(j) (8.3)

The hypothesis P̄footway(sj |si) is defined analogously.

7 OpenStreetMap defines road categories residential and footway using the highway property. Also see:
http://wiki.openstreetmap.org/wiki/Key:highway (accessed: 19.08.2017).
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8.4.4.3. Results

In the following, we compare the hypotheses introduced in Section 8.4.4.2 on the data from
phase 2 and phase 3 of APIC. As in most of the other case studies, we scale concentration
factors κ with regard to the number of states in the state space. That is, we calculate
the Dirichlet parameters α = (αi,j) elicited from the hypothesis matrix φ = (φi,j) as
αi,j = κ ·m · φi,j , where m is the number of states. See Section 3.3.2.3 for details. We
only report results on Turino and Kassel. For the other cities (Antwerp and London),
the general tendencies are the same but due to the smaller amount of data available for
these cities, the results are not decisive with regard to the interpretation table of Kass
and Raftery [273] (cf. Section 3.3.2.1). In contrast, the interpretations we report in the
following are all backed by decisive differences.

Baselines. We first compare the baselines — defined by P̄uniform and P̄adjacency — based
on the data from phase 2 in Turin (see Figure 8.7b). As expected, we observe that — in
a continuous setting — it is appropriate to restrict transitions to adjacent cells. That is,
P̄adjacency outperforms P̄uniform by a large margin.

Roads. Next, we evaluate the performance of weighting the probability of a transitions
to an adjacent cells by the number of common roads with the source cell. The results are
shown in Figure 8.8. On both cities and both phases this hypothesis (P̄roads) shows large
improvements on the baseline P̄adjacency. This indicates the general tendency of users to
navigate according to the properties of the underlying street network so that more “links”
between cells correspond to more people moving to that cell.

Residential roads and footways. Finally, we study the preference for residential roads
and footways. We first concentrate on Turino (Figures 8.8a and 8.8b). In phase 2 we
observe a clear improvement of the hypothesis preferring residential roads compared to
weighting all roads equally (P̄roads) or preferring footways (P̄footway). This corresponds
to the focused exploration of down-town Turino as visualized in Figure 8.4. What is
hardly visible, is that P̄roads slightly (but decisively) outperforms the hypothesis preferring
footways (P̄footway). In contrast, in phase 2, the preference of residential roads cannot
explain the navigation behavior of the users as well as the previously outperformed
hypotheses (P̄roads, P̄footway). Here, however, the footway hypothesis (P̄footway) slightly
(but not decisively) outperforms the unweighted roads hypothesis (P̄roads). This shows,
that indeed, the navigation behavior between the two phases differs significantly with
regard to the preference of residential roads.

Similar results can be observed for Kassel. That is, we observe the same tendencies for
phase 2 where the general trend to follow residential roads is stronger than for Turino.
In phase 3, things are slightly different. In particular, both, the residential and footway
hypotheses outperform the unweighted roads hypothesis. Nevertheless, as for Turino, the
footway hypothesis explains the data better than the residential hypothesis.

Interpretations. Comparing the different cities and the different phases two trends are
apparent: i) A preference for residential roads or footways can improve on the unweighted
roads hypothesis. ii) Residential roads are preferred in phase 2 while footways explain the
navigation behavior better in phase 3. The former shows that road types generally carry
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Figure 8.8.: Comparison of navigation hypotheses on the APIC data. We compare
several hypotheses about human navigation during the two phases of APIC. Generally, we
observe that the hypothesis assuming that participants follow roads, explains the data better
than assuming random navigation (adjacency). We also find that refined information about
street types (residential roads or footways) can improve on the unweighted roads hypothesis.
Furthermore, we observe different preferences for one or the other road type dependent on the
phase of the campaign and its objectives. This is in line with our findings in previous sections
where we have observed different user behavior in the two phases.
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information with regard to navigation preferences, and the latter indicates situational
dependencies with regard to the overall goal and strategies of the users. This is in line with
our findings in previous sections where we have observed different user behavior in the two
phases. One explanation for this may lie in the focus of each phase (cf. Section 8.2): In
the first phase users focused on the city centers trying to cover as much space as possible.
Thus, they focused on the most common streets in these areas, namely the residential
roads. When they were allowed to measure where they wanted to, the focus on the
city center decreased, thus reducing the navigation on residential roads. See Figures 8.4
and 8.5 for a comparison of the respective coverage. The good performance of footways
in Kassel (whereas in Turin there where hardly significant differences) may be due to the
fact at the users mostly measured air quality while commuting and inherently using large
roads which often have an attached footway in Kassel. Further studies will be necessary
to clarify the corresponding details. Such work may explore for example the preferences
for primary, secondary, and tertiary roads instead of footways in the third phase.

8.5. Conclusion

In this case study, we used the data collected in the participatory sensing campaign APIC
for measuring air quality to study human behavior and mobility in terms of activity,
coverage, and motivation. Our results indicated that better coverage is obtained when
volunteers are assigned to a specific mapping area, compared to when they are asked
to select the time and location of their measurements. Additionally, when allowed to
measure freely, they (i) seemed to be attracted to places with higher pollution levels, and
(ii) exhibited differing exploration behavior.

Furthermore, we applied HypTrails to study the underlying processes of the recorded
measurement processes. In the corresponding experiments roads and road types played
an important role for explaining the observed paths. In addition, the results confirmed a
difference in navigational characteristics of the second and the third phase of APIC with
regard to the road types being used. For our experiments, we also developed a way of
formulating hypotheses in the context of temporally dense navigation paths (providing a
location fix every second) in a continuous geo-spatial setting.
Overall, this study helps to understand the behavior of participants of participatory

sensing domains. In particular, the corresponding information can be used to build
user models, interpret the collected data better, or to develop new theories about the
motivational processes of volunteers.
For future work, it may be interesting to extend the transition models as applied in

Section 8.4.4, for example, by further investigating the influence of the road network
in the context of the data provided by OpenStreetMap, by formulating heterogeneous
hypotheses to explain the overall behavior of users during the APIC campaign using
MixedTrails (Chapter 4), or by incorporating preferences for high BC recordings which
may hint at certain measurement biases. Similarly, extending these studies to data from
other participatory sensing campaigns may provide further insights into human navigation
behavior as well as their incentives and goals in the context of environmental studies.
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9. Browsing social tagging systems

As discussed in Chapter 1 and Section 2.2, human navigation behavior is not limited
to geo-spatial navigation but can be observed in online environments as well. In this
case study, we focus on such an online environment, namely the social bookmarking
and publication management system BibSonomy1: Among other factors, we exploit the
unique structural properties of folksonomies as well as the concept of semantic relatedness
(cf. Section 2.2.4.3) to explain human navigation. Furthermore, we systematically study
the navigational preferences of several specific user groups. Besides the possibility of
employing MixedTrails (Chapter 4) and SubTrails (Chapter 5), this illustrates another way
of analyzing the heterogeneous nature of human navigation. Furthermore, this study allows
for novel insights in the navigational processes of online users on folksonomy structures.
The content in the following sections is based on previously published work [373].

9.1. Introduction

In Chapters 7 and 8, we have studied human navigation behavior in a geo-spatial context.
Contrasting, in this case study, we investigate a different form of navigational processes.
Namely, we concentrate on navigation on the web. In particular, we focus on navigation
on social tagging systems which have established themselves as a quick and easy way to
organize and store information, such as bookmarks of websites2 and publications3. In
such systems, users can post resources and freely annotate them with keywords (called
tags), for example, for later retrieval by themselves and by other users. The emerging
structure over users, tags, and resources and their connections is called a folksonomy and
serves as the main navigational concept in social tagging systems, providing links between
co-occurring entities. Through those links, folksonomies possess an inherently semantic
nature, i.e., as demonstrated by the emergence of a shared light-weight ontology from the
assigned tags [56]. However, it is still largely unclear how users make use of the inherent
structural properties of folksonomies as well as the navigation options they are given.
In particular, understanding user behavior as well as differences between various user

groups is an important step towards assessing the effectiveness of a navigational concept
and of improving it to better suit the users’ needs. This task has attracted broad interest
in the research community and previous work has focused on the navigation within one
particular website [145, 519] or on the Web in general [108, 354]. Also, studying the
navigation behavior of users in social tagging systems is of great interest, especially because

1https://www.bibsonomy.org, accessed: December 2017
2e.g., Delicious, http://www.delicious.com, accessed: December 2017
3e.g., BibSonomy, http://www.bibsonomy.org, accessed: December 2017
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9. Browsing social tagging systems

of these systems’ inherent structural properties, i.e., represented by user-resource-tag
triples. Consequently, different studies have addressed this issue: Heckner et al. [238]
conducted a user survey on usage motivation in social tagging systems and Doerfel et al.
[145] used log files to study actual navigation behavior of the overall user population
through request counts. While these findings give first insights into the behavioral
properties of user navigation, they focus on the overall population of users and their
global request counts which do not capture the underlying navigational processes of the
observed behavior.
Problem setting. Although the above mentioned work gives first insights into behavioral
properties of user navigation, there exist several competing ideas and hypotheses about
how users browse within a social tagging system based on local transition probabilities.
Up to this point, such hypotheses were not objectively compared on actual navigation
data and need further investigation.
Approach. To address this issue, we utilize log files of the social bookmarking system
BibSonomy, which provide a unique opportunity to study the navigational trails of
user groups in a folksonomy. In particular, we formulate several navigation hypotheses
and compare them using HypTrails [453] (see Section 3.3.2), a method for comparing
hypotheses about human movement on the Web. We also study how the performance
of explaining navigation behavior differs on different data subsets, such as navigation
grouped by gender, tagging behavior, or long-term experience. In the process, we revisit
the aspects described by Doerfel et al. [145], and extend on their work, providing additional
explanations for user intentions during navigation and their comparison. Furthermore,
because tags and their inherent semantic information exert a great influence on social
tagging systems, it is a logical assumption that navigating those systems is influenced by
the semantic content. Thus, we explicitly search for a signal of the influence of tags on
navigation, that is, a semantic component.
Contribution and findings. Our contributions and findings in this study can be
summarized by three main points: i) We study different hypotheses about navigational
user behavior in tagging systems. ii) We provide evidence for semantic influence on
navigation. iii) We observe that users with different tagging behavior also exhibit
differing navigational traits. Thus, overall, we contribute to a better understanding
of navigation behavior in tagging systems and folksonomy structures. We consolidate
the claims by Doerfel et al. [145] and shed light on general as well as subgroup specific
behavior. Also, we expect our results to be relevant not only for researchers interested in
understanding human behavior and social tagging, or operators of any system utilizing
tags (e.g., Twitter), but also for the Semantic Web community.
Structure. This case study is structured as follows: Section 9.2 gives a formal definition
of social tagging systems and Section 9.3 introduces the data we use in our experiments.
Afterwards, we formulate hypotheses about navigation behavior on folksonomies in
Section 9.4. The next section (Section 9.5) presents the results with regard to the
behavior of the overall population as well as several subgroups. We finalize this case study
by covering related work on navigation analysis on folksonomies in Section 9.6 and giving
concluding remarks in Section 9.7.
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9.2. Background

Social tagging systems have established themselves as popular means for organizing and
managing digital resources on the Web. The basic idea of a tagging system is that
each user can post resources and annotate these resources with freely chosen keywords
(tags). By allowing users to assign arbitrary keywords to a resource, they form a powerful
alternative to more traditional resource directories or catalogs with fixed taxonomies.
The structure emerging from tagging activities is called a folksonomy. Hotho et al.

[246] models a folksonomy as a quadruple F := (U, T,R, Y ), where U , T , and R are
the finite sets of all users, tags, and resources, respectively. The set of tag assignments
Y ⊆ U × T ×R is a ternary relation between these sets. Hereby, (u, t, r) ∈ Y means that
user u has annotated resource r with tag t. A post from a user u with a posted resource r
and the annotated set of tags Tur is defined as a set Pu,r = {(u, t, r)|t ∈ Tur} ⊆ Y . This
also implies that users cannot assign the same tag to a resource twice.

An example for a folksonomy is BibSonomy, a social tagging system for bookmarks and
scientific publications (cf. Benz et al. [55]). Note that next to the navigation structure
described above, real world implementations often introduce additional navigational
features such as showing related tags on tag pages or a menu with links to a logged-
in user’s own pages. Because of this, navigation does not always strictly follow the
folksonomy-induced link structure.

9.3. Data

The datasets used in this case study are based on web server logs and database contents
of BibSonomy. Because in 2012 the login mechanism was modified, which introduced
significant changes to the logging infrastructure, we restrict the datasets to data created
between the start of BibSonomy in 2006 and the end of 2011. Anonymized datasets
of logs and posts are made available to researchers by the BibSonomy team.4 Because
BibSonomy is a popular target for users who bookmark advertisements, the system uses
a learning classifier as well as manual classification by the system’s administrators to
detect spam. In all experiments, we only use data of users that have been classified as
non-spammers.

User and content dataset. We use the folksonomy data (all non-spammers with their
respective resources and tags) from the BibSonomy database. In the considered time
frame, 17,932 users were explicitly classified as non-spammers. They created 456,777
bookmark posts and 2,410,844 publication posts using 204,309 distinct tags. Since we need
semantic similarity scores between pages for the semantic navigation hypothesis (where we
assume users to navigate towards semantic similar resources/pages, cf. Section 9.4.1), we
consider all tags which have been used at least twice in order to receive more meaningful
results by avoiding typos or rarely used words. With this pruning step, we end up with
65,228 distinct tags.

4http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/, accessed: December 2017
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Request log dataset. The BibSonomy log files include all HTTP requests to the
system (caching is disabled), including common request attributes like IP address, date
and referrer, as well as a session identifier and a cookie containing the name of the
logged-in user. We only considered direct (i.e., no redirected) valid requests, which have
been generated by logged-in non-spammers. Both the referrer and the target page of
a request must be a retrieval page, that is a page that is used to retrieve information
(e.g., a resource or a list of resources; we discuss each considered retrieval page type in
the next subsection). For the semantic navigation hypothesis, we had to extract the tag
cloud representation of each page. Because a successful request does not imply that the
requested page contains any content (e.g., a user tried to filter her collection by a tag
that she had not used), we only consider requests that yield a non-empty set of tags using
the procedure described later in this section. The remaining dataset contains 103,415
distinct visited pages. We recorded 327,060 transitions between these pages. 123,452
transitions were self-transitions (i.e., transitions from a page to itself) and 261,300 were
own-transitions (i.e., transitions, where the logged-in user owns both the source and the
target page). One factor responsible for the large number of self-transitions are pagination
effects.

Page types and categories. The pages we consider after filtering the request logs can
be assigned to exactly one of six page types. These page types can be grouped into three
categories, matching the three entity types of a folksonomy, i.e., user, tag, and resource.
The six page types (with their corresponding categories) are:5

/user/USER
lists all posts of the requested user USER (user).

/user/USER/TAG
shows all posts which were tagged with tag TAG by user USER (tag).

/tag/TAG
lists all resources with the tag TAG (tag).

/url/RESOURCE_IDENTIFIER6

describes pages of bookmarked weblinks to the same web page (resource).
/bibtex/RESOURCE_IDENTIFIER

describes pages that show all publication posts, with the same resource contributed by
different users (resource). Similar to the previous page type.

/bibtex/RESOURCE_IDENTIFIER/USER
shows all information that the user USER added for a specific publication (resource).

For bookmarks, no details pages exists. Instead, clicking a bookmark directly leads to a
page outside of BibSonomy. Thus, these requests are not tracked by the logs.

Tag clouds as semantic page representations. Since each retrieval page in BibSo-
nomy shows a set of posts, we can define a tag cloud for each page. Given a page sk, its

5Both /url/RESOURCE_IDENTIFIER and /bibtex/RESOURCE_IDENTIFIER have been restructured and
redesigned in mid 2016. They now show combined information about the web page or the publication
instead of a list of the same resource.

6 BibSonomy calculates an identifier for each resource (URL or publication). See http://www.bibsonomy.
org/help_en/InterIntraHash (last accessed: December 2017) for more information.
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tag cloud is defined as the set of tags with their respective frequencies, which are assigned
to the posts of this page. For example, the tag cloud of a page showing two posts, one
resource tagged with social and web and another resource tagged with social, concept
and web, would be tagcloud(sk) := {(social, 2), (concept, 1), (web, 2)}. The corresponding
document-term vector vk for the page sk with the above mentioned tags as features would
thus yield vk := (2, 1, 2), which can be used to represent the page sk.

9.4. Hypotheses on navigation in social tagging systems

As in the previous case studies (Chapters 7 and 8) we formulated abstract ideas about
geo-spatial human navigation as hypotheses to compare them by using HypTrails [453]
(cf., Section 3.3.2). However, instead of discretized geo-spatial state spaces, here, users
visit web pages provided by a social tagging system. Analogously, hypotheses are repre-
sented by transition probabilities φ = (φi,j) between these pages which we formulate by
defining transition functions P̄ (sj |si) which can be converted into the required probability
distributions by normalizing the values for each source state si.
In this section, we first define basic hypotheses, motivated by general ideas about

how users possibly navigate social tagging systems. Afterwards, we combine selected
hypotheses in order to see how the different aspects influence each other.7

9.4.1. Basic hypotheses

First, we formulate basic hypotheses, each representing a basic aspect of navigation.
Uniform hypothesis. Similar to our example in Section 3.3.2.1 and previous case studies
(Sections 7.3 and 8.4.4.2), the uniform hypothesis (also called teleportation hypothesis)
serves as the baseline for all other hypotheses. It models the assumption that users
randomly choose an arbitrary page to visit next, without regard for the underlying link
structure. Formally, this is expressed as:

P̄uniform(sj |si) = 1 (9.1)

Since this hypothesis does not require any additional information, it can be considered
the least informative one. Any informed hypothesis capturing a structurally interesting
aspect of user behavior, should exhibits a higher evidence than this simple hypothesis.
Page consistent hypothesis. Results found by Doerfel et al. [145] motivate the idea
that users often make a transition from a page to itself. This might be accounted for by
various reasons, for example to follow pagination, that is, showing the next n elements in
a truncated list. This hypothesis is formalized as:

P̄page(sj |si) =

{
1, if si = sj

0, otherwise
(9.2)

7With regard to the notion of global and local hypotheses as introduced in Section 7.3, all proposed
hypotheses (except the uniform baseline) are local, since the transition probability distributions for
each state depend on state specific attributes instead of global statistics that hold for all states equally.
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Category consistent hypothesis. Doerfel et al. [145] found that transitions between
two pages often occur between pages of the same category, i.e., after a user has visited
a tag page, the next page is likely to be a tag page again. The same holds for resource
and user pages. The classification of pages into one of these categories is described in
Section 9.3. Thus, the hypothesis states that users stick to the same category. With
cat(sk) denoting the category of page sk, this is defined as:

P̄cat(sj |si) =

{
1, if cat(si) = cat(sj)

0, otherwise
(9.3)

User consistent hypothesis. Similarly to the category consistent hypothesis, this
hypothesis assumes that a transition’s target and source page belong to the same user.
The motivating intuition for this hypothesis is that visitors, who are interested in the
work of a specific user, will not only read one, but several of her articles and try to further
explore her personomy (i.e., the subset of the folksonomy that only contains the user and
the resources and tags posted by the user). With user(sk) denoting the user associated
with page sk, this is defined as:

P̄user(sj |si) =

{
1, if user(si) = user(sj)

0, otherwise
(9.4)

Folksonomy consistent hypothesis. Social tagging systems map links of the under-
lying folksonomy to actual hyperlinks of the system. For example, the page of a resource
contains hyperlinks leading to the page of the resource’s owner as well as to the pages of
the assigned tags. For that reason, this hypothesis assumes that users navigate only to
pages which are reachable (i.e., via a single action/link) using the folksonomy structure
or by taking advantage of related-tags relations. To calculate reachability, we construct
the page graph from the tag-assignments in the folksonomy dataset and (since they are
an integral part of the BibSonomy user interface) we add tag-to-tag relations, when tags
occur together at the same post. Formally, we define:

P̄folk(sj |si) =

{
1, if sj is directly reachable from si in the folksonomy
0, otherwise

(9.5)

Semantic navigation hypothesis. We aim to investigate the influence of a potential
semantic component in navigation behavior. To compute the corresponding semantic
similarities between two pages, a page sk is treated as a document. The set of tags
which appear on that page with respective frequencies (see Section 9.3) is treated as
the document’s “text”, represented as the TF-IDF vector vk. Thus, the similarity of two
pages is calculated with the cosine measure cossim(vi, vj) = 〈v̂i, v̂j〉, where v̂k denotes
the normalized vector of vk. The hypothesis is defined as:

P̄tfidf(sj |si) = cossim(vi, vj) (9.6)
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9.4.2. Combining hypotheses

In order to investigate possible mutual influences between hypotheses, it is also possible
to combine them. In the following, we motivate and describe certain combinations.8

Folksonomy consistent and semantic navigation hypothesis. As described earlier,
it is a natural assumption that users utilize the folksonomy structure when navigating
a social bookmarking system. If the folksonomy does indeed exhibit notable semantic
properties, we should be able to see that adding a semantic component to folksonomic
navigation improves the evidence of this hypothesis compared to the bare folksonomy
navigation hypothesis. We define the hypothesis as:

P̄folk-tfidf(sj |si) = P̄folk(sj |si) · P̄tfidf(sj |si) (9.7)

User consistent and semantic navigation hypothesis. A similar motivation as with
folksonomic and semantic navigation arises when we combine user consistent and semantic
navigation. Users are usually thematically restricted in their research interests and can
thus serve as a good selector for a limited field of topics. Furthermore, navigation in the
user’s personomy is expected to show a strong semantic component. This hypothesis is
defined as:

P̄user-tfidf(sj |si) = P̄user(sj |si) · P̄tfidf(sj |si) (9.8)

User consistent and folksonomy navigation hypothesis. The intuition behind
combing user consistent and folksonomic navigation is that, if navigation is mostly user
consistent and partially follows folksonomy induced links, folksonomic navigation on pages
from the same user should yield a good model of navigation. We define this hypothesis as:

P̄folk-user(sj |si) = P̄user(sj |si) · P̄folk(sj |si) (9.9)

9.5. Results

In this section, we evaluate hypotheses about how users navigate on BibSonomy by
employing HypTrails [453] as introduced in Section 3.3.2. We first compare our (homoge-
neous) hypotheses (cf. Section 9.4) on the overall request log dataset. Then, we manually
(as opposed to using SubTrails from Chapter 5) analyze behavioral characteristics of
different subsets of the data in order to investigate specific subgroups of the data in a
target-oriented way.
Note that, in the following experiments, analogously to most of our case studies (e.g.,

Sections 7.4.1 and 8.4.4.3), we scale the concentration factors κ with regard to the number
of state spaces. That is, we calculate the Dirichlet parameters α = (αi,j) elicited from
the hypothesis matrix φ = (φi,j) as αi,j = κ ·m · φi,j , where m is the number of states.
For details please see Section 3.3.2.3.
8 Note that we combine hypotheses by multiplication only. Due to the binary nature of most of
our hypotheses, this results in a very restrictive process, i.e., the probabilities of many transitions
that either of the combined hypotheses deems plausible are set to zero. However, we leave further
combination schemes, e.g., using weights, to future work. See Chapter 10 for an example of using
weights in the context of task choosing behavior on crowdsourcing platforms.
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Figure 9.1.: Comparison of hypotheses for overall navigation behavior on BibSono-
my. The chart shows the marginal likelihood curves for our hypotheses on the complete request
log dataset. Of the basic hypotheses, the user consistent hypothesis explains the data best,
followed by the semantic and the folksonomy hypotheses. When combining the user consistent
hypothesis with a semantic bias, the evidence improves. This indicates that users are actually
semantically biased while navigating through resources. In contrast, combining other hypotheses
with the folksonomy hypothesis does not yield better explanations for the observed navigation.

9.5.1. Overall request log dataset

In this section, we focus on the overall dataset (cf. Section 9.3) on which we frist
compare the basic hypotheses (cf. Section 9.4.1) followed by the combined hypotheses (cf.
Section 9.4.2). Figure 9.1 shows the results.
Basic hypotheses. All of the basic hypotheses explain the observed transitions better
than the baseline (the uniform hypothesis) to varying degrees. This indicates that they
all contain at least some navigational characteristics explaining the observed transitions.
Besides this fact, there is a clear order of hypotheses: the user consistent hypothesis

works best, the semantic and the folksonomy hypotheses are somewhat similarly plausible,
followed by the page consistent and the category consistent hypotheses. Many of the
observed effects are explainable by the large number of self-transitions in the dataset
caused, for example, by pagination (cf. Section 9.3):

1. The page consistent hypothesis strongly improves on the uniform hypothesis.

2. The category consistent hypothesis is more plausible than the uniform hypothesis,
even though it directly contradicts navigation as induced by a folksonomy structure.

3. The user consistent hypothesis as well as semantically induced hypotheses are
strongly favored because of self-transitions.

174



9.5. Results

Nevertheless, the user consistent as well as semantically induced hypotheses are also more
plausible than the page consistent hypothesis, indicating that their structural properties
cover further important factors. That is, the superiority of the user consistent hypothesis
indicates that users indeed navigate mostly on their own resources (cf. Section 9.3). The
good performance of the semantic hypotheses indicates that semantic similarity of pages
(with regard to tags) is a strong explaining factor for navigation on our dataset from
BibSonomy.

Finally, we consider the folksonomy hypothesis which models the navigation we expect
in a folksonomy (see Section 9.4.1). It performs similarly well as the semantic hypotheses.
We observe that the corresponding evidence curve crosses the semantic hypothesis (tfidf )
for increasing concentration factors κ. This indicates that the folksonomy hypothesis
covers an important factor of the navigation, but fails to model certain transitions,
which are covered by the semantic hypothesis. The fact that the folksonomy hypothesis
cannot cover certain transitions is due to navigation outside the folksonomy structure as
elaborated in Section 9.3.
Combined hypotheses. Overall, the combination of the user consistent and the semantic
hypotheses performs best, indicating that navigation on BibSonomy can mainly be
explained by semantic navigation within the resources of a specific user.

In contrast, combining the folksonomy hypothesis with the semantic hypothesis decreases
the observed evidence slightly. Also, combining the folksonomy hypothesis with the user
consistent hypothesis decreases the observed evidence dramatically. Both observations
indicate that users excessively take advantage of additional navigation features provided
by BibSonomy (see Section 9.2) when navigating on their own resources. Interestingly, in
Section 9.5.2, we see that this does not hold when users navigate outside their own scope,
that is, on resources exclusively from other users.

9.5.2. Request log subsets

Due to the heterogeneous nature of human navigation (cf. Section 2.2.5), we expect that
there are subsets of our data where some hypotheses perform differently than on the overall
dataset. Instead of applying SubTrails to automatically find subgroups with exceptional
transition behavior (cf. Chapter 5), here, we investigate prominent subgroups found in
literature. In particular, we investigate different data subsets as listed in Table 9.1.
Inside and outside navigation. Motivated by the fact that users often navigate on
their own pages (cf. Section 9.3), we investigate whether users behave differently when
they are browsing the folksonomy outside of their own resources. In particular, we study
the transitions where the source as well as the target state do not belong to the browsing
user. This encompasses 42,192 transitions, cf. Table 9.1. The results can be seen in
Figure 9.2 Note, that we only show the results for outside navigation because the results
for inside navigation (the source and target state belong to the navigating user) hardly
differs from the results on the overall dataset (see Figure 9.1).
The best explanation for the observed navigation is the folk-tfidf hypothesis which

considers semantic behavior in combination with the structural properties of the folkson-
omy. This allows us to conclude that while users do not use the folksonomy structure
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Table 9.1.: Details on the request-log subsets from BibSonomy.
source states links counts

overall 55,129 149,542 327,060
inside 37,244 105,222 261,300
outside 14,757 28,760 42,193
male 23,090 61,616 130,988
female 5,598 14,413 29,705
neutral 28,726 73,575 161,830
lower_trr 30,368 83,268 176,755
upper_trr 7,084 15,474 32,517
lower_ten 3,459 6,959 15,451
upper_ten 51,542 140,844 307,072
short-term 10,285 21,912 48,221
long-term 45,535 126,453 274,302

when accessing their own resources (because they most likely explicitly access known
publications), they fall back to the folksonomy structure when browsing resources outside
of their scope. Furthermore, the evidence for the user consistent hypothesis drops strongly
compared to the other hypotheses, because it is restricted to user consistent navigation
outside of the browsing user’s resources. This leads us to believe that browsing outside of
the own resources is a process aimed at the discovery of new resources which in turn is not
bound to the ownership of resources. Additionally, the fact that the (plain) user-consistent
hypothesis performs similarly well as the self-transition hypothesis indicates that the
observed user-consistent outside navigation is mostly due to pagination effects.

User gender. Since gender bias in online systems is an active research area [499], we
also investigate the navigation for different genders. In BibSonomy, users can set their
gender explicitly. If no gender was set, we assign the label neutral, otherwise, we can
distinguish between female and male. These classes contain 161,830, 29,705, and 130,988
transitions respectively (cf. Table 9.1).
We hardly observed any difference between genders, thus we do not show dedicated

plots. There is only a slight difference for the semantic hypotheses compared to the
folksonomy hypothesis. It seems that navigation behavior of male users shows a tendency
towards following the folksonomy structure whereas the navigation behavior of female
and especially neutral users can be better explained by the semantic (tfidf ) hypothesis.

Usage continuity. Since we expect users to adapt to systems they are using, we
investigate if their navigation behavior changes over time. We divide users into short-term
and long-term users, according to the temporal difference of their first and last request.
If the difference is less than half a year, we classify a user as a short-term user and as a
long-term user otherwise. This results in 48,221 transitions from short-term users and
274,302 transitions from long-term users, cf. Table 9.1. In Figure 9.3, we report the
results for short-term users. The results for long-term users are very similar to the results
of the overall dataset (cf. Section 9.4.1).

When comparing against the overall dataset (or, equivalently, the long-term user group),
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Figure 9.2.: Comparison of hypotheses for outside navigation on BibSonomy. This
figure shows the marginal likelihood curves for hypotheses on the subset of navigation outside of
the user’s resources. In contrast to the overall dataset, we observe that outside navigation can
be explained best by a hypothesis assuming semantic behavior on the folksonomy structure (cf.
folk-tfidf ).

we observe two conspicuous differences for short-term users. First, the semantic hypothesis
performs significantly better when compared to the folksonomy hypothesis. Secondly, the
page-consistent and the folk-user hypotheses are explaining navigation equally well. The
former may be explained by the fact that new users are not as tuned to the folksonomy
structure as long-term users. Thus, we may actually observe a learning process: the
longer users work with the folksonomy, the more they exploit the folksonomy structure
in order to navigate their own resources or to discover new ones. The similar evidence
curves for the page-consistent and the folk-user hypotheses can be explained by increased
pagination effects while exploring the system in combination with the lack of transitions
on resources owned by the browsing user. In contrast to outside navigation, here, the
lack of transitions on own resources can be explained by the fact that new users have no
or a lot less own resources than long-term users.

Tagger classes. In Körner et al. [284] and Niebler et al. [375], different types of
folksonomy users were characterized by their tagging behavior. Körner et al. [284] define
categorizers and describers and Niebler et al. [375] identify generalists and specialists.
Categorizers and describers are classified by their tag-resource-ratio (or short trr). That
is, while categorizers use a small set of different tags for a large number of resources,
indicating elaborate category systems, describers use many different tags, indicating a
very descriptive approach when tagging. Generalists and specialists are classified using
tag entropy (or short ten), where generalists have a high tag entropy, indicating a wide
variety of tagged topics with regard to their resources, while specialists have a low entropy
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Figure 9.3.: Comparison of hypotheses for short-term users on BibSonomy. This
figure shows the marginal likelihood curves for our hypotheses on the subset of short-term users
(≤ half a year according to their first and last request). We observe a stronger performance of the
semantic hypothesis compared to the folksonomy hypothesis and see that the self and folk-user
hypotheses perform equally well in explaining navigation. We attribute this to the increased
browsing aspect of new users.

indicating a very specialized set of topics. For both classes we order users according to
their trr and ten values separately and select the upper and lower 30%, respectively. For
statistics on all tagger classes, such as the number of states, links, and transitions, please
see Table 9.1.
We observe that categorizers and generalists show very similar evidence curves when

compared to the overall navigation dataset. For the describers and specialists the curves
are very similar to those of the previously studied short-term users, thus, we refrain from
depicting them.

For both, describers and specialists, we see the same tendency as for short-term users
(cf. Figure 9.3): the semantic hypothesis works better compared to the folk hypothesis
and the user-consistent hypothesis has a tendency to perform equally well as the folk-user
hypothesis.

The tendency towards semantic navigation over structural navigation on the folksonomy
structure can most likely be explained by the nature of the tagging types: Specialists can
be considered to be interested in rather few abstract topics, implying a more directed
browsing behavior than generalists (whose interests are more varied). Consequently, their
navigation is expected to also be more semantically influenced, because of their use of a
small, but highly specialized tag subset. As for describers, resources are tagged with more
keywords. Thus, for the semantic measure based on TF-IDF, calculating the similarity
may simply be easier than on the very sparse tagging structures induced by a categorizer’s
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tagging habits.
In general, both types, specialists and describers, can be considered to be of a more

explorative nature, as can be seen by the relative performance drop of the folk-user
hypothesis and/or the increase of evidence for the self-transition hypothesis.

9.6. Related work

In the following, we cover work related to our analysis of human navigation in the context
of folksonomies and social tagging systems. For a broader overview on navigation on the
web see Section 2.2.

The term folksonomy was first mentioned by Vander Wal in 2004 on his personal
blog.9 He used this term to describe the underlying structure connecting users, tags, and
annotated resources in social tagging systems. While Mathes [346] hypothesized that tag
distributions follow a power law distribution, thus possibly causing semantic stabilization,
Golder and Huberman [211] showed that after a certain time span, regularities in user
activity, tag frequencies and relative frequency proportions could be observed. In turn,
this motivated further investigations of tagging systems, especially about the effective
extraction of semantically stable content [93] and motivation of tag usage [284]. Heckner
et al. [238] conducted a user survey on the users’ motivation for using social tagging
systems, that is, whether users store resources for their own retrieval or social sharing
purposes. While there exists a large amount of literature on tagging systems, to the best
of our knowledge, there exists only a small amount of work utilizing and analyzing log
data. Millen and Feinberg [357] investigated user logs of the social tagging system Dogear,
which is internally used at IBM and thus not publicly available, as opposed to BibSonomy
which we use in this case study. They found strong evidence for social navigation, that
is, users are looking at posts from other people instead of mainly their own. In Doerfel
et al. [145], a thorough study of user behavior on BibSonomy was presented. With
our experiments in this case study, we extended these findings, focusing on the actual
navigation behavior of users.

9.7. Conclusion

Understanding human navigation in web systems is an important step towards improving
the design and usability of web pages. In this case study, we analyzed navigational behavior
of users in a social tagging system. We presented several hypotheses on navigational
patterns and evaluated them on a large web-log dataset of the social tagging system
BibSonomy.

Beyond confirming the results by Doerfel et al. [145], that is, that users mainly navigate
on their own resources, we were able to show that within these resources, navigation
follows a semantic bias (cf. Section 9.5.1). Also, the semantic hypothesis performed well
in general, confirming the semantic component in navigation behavior on BibSonomy.

9http://vanderwal.net/random/category.php?cat=153
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Furthermore, we studied different navigation subsets which represents an alternative
to applying MixedTrails and SubTrails (cf. Chapters 4 and 5, respectively) for studying
heterogeneity in navigational processes. The results showed significant differences in
behavioral characteristics. This includes that even though semantic, user consistent
navigation represented a major aspect of the navigational characteristics of BibSonomy,
users fell back to the folksonomy structure when browsing outside of their own pages
(cf. Section 9.5.2). Also while different genders did not exhibit interesting behavioral
deviations, short-term users, as well as different tagging types, followed certain behavioral
patterns matching their individual characteristics. In particular, while it has been only
hypothesized in prior work [284] that categorizers and describers (as well as generalists
and specialists) differ in navigation behavior, we found specific components of their
behavior which differed significantly, thus, indicating that navigation behavior and tagging
pragmatics are indeed connected.

Overall, we were able to gain new insights into the underlying processes of navigation
in tagging systems, which can be extended and leveraged in the future, for example, by
considering new hypotheses, improving navigation experience, or extracting semantics.
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10. Choosing campaigns on
crowdsourcing platforms

In this case study — similar to Chapter 9 — we investigate navigation processes on
the web. However, instead of directly studying browsing or searching behavior on web
resources, we are investigating the more abstract notion of task choosing behavior on
crowdsourcing platforms. As in the previous case studies, we formulate and compare
hypotheses based on HypTrails (cf. Section 3.3.2). On a methodological level, this case
study is noteworthy because it presents an approach to cope with temporal constraints
when formulating hypotheses. That is, we account for the limited availability of individual
campaigns to choose tasks from. Besides this theoretical contribution, to the best of
the authors knowledge, this study presents the first study to explore hypotheses about
task choosing behavior on crowdsourcing platforms based on large-scale log data instead
of often small numbers of handcrafted surveys. We have previously published the work
presented in this section [40].

10.1. Introduction

Crowdsourcing platforms are a relatively new type of large scale Internet services and
represent a specific type of online labor markets. In contrast to traditional forms of
organizing work, the crowdsourcing paradigm is characterized by the fact that tasks
are not assigned to a specific person. Instead, employers define campaigns consisting of
a set of tasks which are made available on crowdsourcing platforms. Then, the users
of this platform — so called workers — freely choose from the pool of available tasks.
The granularity of work on crowdsourcing platforms is smaller than in traditional forms
of work organization [244]. This results in pools of hundreds to thousands of different
tasks [254], which users have to navigate when choosing their workload.
Problem setting. The large number of tasks and campaigns on crowdsourcing platforms
poses challenges: On the one hand, workers face the issue of efficiently finding tasks
fitting their profile, e.g., according to their skills or their interest. On the other hand,
employers need all their tasks to be completed. Both interests have to be addressed by the
crowdsourcing companies. To solve these issues, mechanisms like task recommendation
systems have been identified as a relevant research topic [281].
However, recommendation systems as well as similar mechanisms to support the

workers in choosing their tasks need prior knowledge about task selection preferences.
Unfortunately, there is only little information about how workers navigate the space of
available tasks on crowdsourcing platforms: Current studies are based on surveys which
only cover small subsets of workers and are also highly subjective.
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Approach. In this case study, we address this lack of quantitative studies and objectively
evaluate the influence of different factors involved in the selection process of tasks. To
this end, we employ logs from the commercial crowdsourcing platform Microworkers.com1

and — according to the navigation paradigm of this thesis — interpret the set of tasks
a user has completed as ordered trails. Then, similar to the previous case studies, we
apply the HypTrails approach [453] (cf. Section 3.3.2): Based on results from related
papers, we formulate hypotheses on task choosing behavior and compare them directly
on the observed trails which feature the work history of 39, 100 workers over 6 years.
Among others, the hypotheses considered in this work are based on campaign categories,
monetary incentives, or semantic similarity of campaigns.

Contribution and findings. We objectively evaluate a considerable set of hypotheses
and find that, in our scenario, those based on work categories and employers as well as
campaign descriptions work best. Our approach enables crowdsourcing companies to
better understand their users in order to optimize their platforms, e.g., by incorporating
the knowledge gained about these factors into task recommendation systems.

Structure. The reminder of this case study is structured as follows. We first cover
background on crowdsourcing platforms in Section 10.2. Then, the applied methodology
and the underlying dataset are described in Section 10.3. The considered hypotheses
are introduced in Section 10.4 and the results of our experiments are presented in
Section 10.5. Section 10.6 discusses the results. Finally, in Section 10.7 we give a general
overview of related work on influence factors on task selection in commercial crowdsourcing
environments and conclude this case study in Section 10.8.

10.2. Background

We study how users choose tasks on crowdsourcing environments. Commercial crowdsourc-
ing environments usually involve three actors: (i) platform users submitting work to the
platforms, so called employers, (ii) users completing work submitted to the platform, so
called workers, and (iii) the platform operators. As mentioned before, unlike in traditional
forms of work organization, employers do not choose dedicated workers for completing the
submitted work. Instead they define certain tasks and make them available through the
crowdsourcing platform. The workers can then freely choose from the currently available
work. Usually employers never communicate directly with workers. Instead, the platform
and its operators are responsible for providing means to publish work on the platform,
submit completed work, and transfer remuneration between worker and employer.

While a wide variety of crowdsourcing platforms exists, micro-tasking platforms, such as
Microworkers, focus on highly repetitive tasks which can be completed in a short amount
of time (a few minutes up to an hour). Micro-tasks include, e.g, tagging a series of images
or categorizing the sentiment of a set of short text messages. Due to the repetitive nature
of micro-tasks, employers publish a campaign describing a class of tasks and set a number
of task instances for workers to complete for that particular campaign. A campaign ends

1https://microworkers.com/ (accessed: Aug. 2015)
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when all tasks have been completed. Each task can only be chosen once by a single
worker. On the Microworkers platform, which we consider in this work, workers also
cannot choose more than one task from the same campaign. Thus, in the following, the
notion of campaign and task are used interchangeably.

Our main goal is to study how workers choose their tasks in crowdsourcing environments.
Since we use HypTrails [453] (cf. Section 3.3.2) as our method of choice, we need to model
this process as a set of transitions between campaigns. As each task is associated with
a campaign, we can also derive a “trail” of campaigns for each user. That is, each trail
consists of the campaigns associated with the tasks she has completed consecutively. At
the same time, these trails define the transitions we need for the HypTrails approach.

10.3. Data

We use a dataset from the crowdsourcing platform Microworkers.com.2 The data includes
anonymized information about campaigns and users in a time period between the founding
of the platform in May 2009 and January 2015. In the following, we first explain two
specific characteristics of the dataset we need to consider in order to apply HypTrails
[453] (cf. Section 3.3.2) and then introduce several campaign features we use for defining
hypotheses (cf. Section 10.4).

Data restrictions. With respect to some special characteristics and features of Mi-
croworkers, we have to limit the data utilized for our HypTrails computation. Microworkers
offers the possibility for employers to restrict their campaigns to workers from specific
countries. To keep things as simple as possible, we choose to focus on US workers because
they have access to most campaigns. In order to do so, we remove campaigns which place
restrictions on US workers as well as campaign transitions from non-US workers.

Additionally, instead of releasing all tasks of a campaign at once, employers can set its
tasks to be released successively at a certain speed. However, since we define hypotheses
based on transition probabilities between campaigns, we need to model which campaigns
are available after finishing a task. The task release speed feature complicates this process.
Thus, we only consider campaigns with a large enough speed in order to guarantee that
this does no restrict the workers artificially.
In spite of these restrictions, our final dataset still contains 81, 544 campaigns and

3, 415, 119 completed tasks. This includes 95% of the US workers and corresponds to 55%
of the campaigns available to them as well as 60% of their completed tasks.

Campaign features. For defining hypotheses in Section 10.4, we use several features
based on campaign properties. These include campaign categories, payment, the time
required to finish a task, payment per hour, and the number of tasks offered by a campaign.
These properties are introduced in the following.

On the Microworkers platform, each campaign is associated with one of 20 campaign
categories, e.g., “promotion” or “writing”. The distribution of the campaigns per category is
shown in Figure 10.1a. The campaigns are not uniformly distributed, i.e., three categories

2https://microworkers.com/ (accessed: Aug. 2015)
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Figure 10.1.: Selected statistics of the Microworkers dataset.

are very prominent. Each of these categories contains between 15% and 25% of the
campaigns, whereas most of the other categories only contain 5% or less. On the one
hand, the popular categories include simpler tasks with lower requirements to complete
these tasks successfully. On the other hand, new categories were added over time, which
is also responsible for this imbalance.

Besides the categories, campaigns differ concerning their payment. However, payments
are strongly skewed towards small amounts of money. Since we later want to gauge
whether workers generally tend to choose campaigns which are better payed, we divide the
payment range into three classes, i.e., low, medium and high. We choose these intervals
so that campaigns are as equally distributed as possible. Figure 10.1b shows the resulting
distribution. The intervals are: $0.0 to $0.15 for low, $0.15 to $0.30 for medium, and
amounts of more than $0.30 for highly paid tasks.

The time required to finish a task is also a feature we will use to derive hypotheses. The
time is set by the employer and is an estimation about how long a single task will take
approximately. However, here it is not possible to derive equally sized intervals, since one
time setting is far too prominent.
Using the payment and the time required to finish a task, we can derive the payment

per hour (pph) for each campaign. Again, we define intervals so that campaigns are as
equally distributed as possible. The intervals are: $0.0 to $2.4 for low, $2.41 to $6.0 for
medium, and amounts of more than $6.0 for high.

Additionally, each campaign defines a different number of tasks (also called positions)
which ranges from 30 up to several hundred. Similar to payment, campaigns often only
provide a rather low number of tasks. Consequently, we again choose to define equally
sized intervals. The intervals are: only campaigns with 30 tasks for low, 31 to 90 tasks
for medium, and 90 tasks and up for high volume campaigns. The resulting distribution
is depicted in Figure 10.1b.

10.4. Hypotheses

In the crowdsourcing environment users choose tasks from different campaigns. These
campaigns correspond to the states S of the Markov chain employed by HypTrails [453] (cf.
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Section 3.3.2) to formulate hypotheses. Analogously to our other case studies, hypotheses
are represented by transition probabilities φ = (φi,j) between these pages formulated
by transition functions P̄ (sj |si) which can be converted into the required probability
distributions by normalizing the values for each source state si.

10.4.1. Uniform hypothesis and availability

With the uniform hypothesis we assume that, after finishing a task from a campaign, a
user will randomly choose a task from any other campaign. As in the other case studies
(e.g., Sections 7.3 and 9.4), this hypothesis will serve as our baseline due to its “uninformed”
nature. Formally, the uniform hypothesis is defined as:

P̄uniform(sj |si) = 1 (10.1)

However, since campaigns are only available for a user to choose as long as there are some
incomplete tasks, the point in time when a user chooses her next campaign defines the
set of campaigns available to choose from. That is, a user can not choose a campaign
whose tasks have all been completed. Now, assume that a user just finished working on
a campaign si. Then, let [t

(i)
start, t

(i)
end] denote the time interval in which campaign si was

active, i.e., t(i)start is the time campaign si was made available for users and t(i)end is the time
the last task has been completed. Thus, the user finished her task sometime between t(i)start

and t(i)end. In the best case, the user finished her task at t(i)start, i.e., right after campaign
si started. If we now assume that a user may wait arbitrarily long before choosing her
next campaign, all campaigns sj ending after campaign si has started (t(j)end ≥ t

(i)
start) are

available to the user. However, all campaigns sj′ which have ended before campaign
si has started (t(j

′)
end < t

(i)
start) are not available to the user. Now, for all users, given a

campaign si they just finished, we define a set of available campaigns S(i):

S
(i)
after = {sj ∈ S | t(j)end > t

(i)
start} (10.2)

This availability setting assumes that a user may take an arbitrarily long time for choosing
her next campaign. However, since tasks usually require a short amount of time to
complete and campaigns only pay small amounts of money for theses tasks, a user
whose goal is to earn a sensible amount of money will choose her campaigns in quick
succession. Thus, it is realistic to assume that users only pick from campaigns available
at the time they finish. This can be modeled by assuming that a campaign sj is only
available from another campaign si, if the active time of both campaigns overlap, i.e.,
[t

(i)
start, t

(i)
end] ∩ [t

(j)
start, t

(j)
end] 6= ∅. Formally, the corresponding set of available campaigns,

given a campaign si is defined as:

S
(i)
overlap = {sj ∈ S | [t

(i)
start, t

(i)
end] ∩ [t

(j)
start, t

(j)
end] 6= ∅} (10.3)

Thus, given different definitions of availability S(i), the most natural extension of the
uniform hypothesis is to set the probability of campaigns which are not available from a
given campaign to zero:
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P̄av(sj |si) =

{
1, if sj ∈ S(i)

0, otherwise
(10.4)

We formulate two corresponding hypotheses, namely P̄after and P̄overlap. The uniform
hypothesis P̄uniform is equivalent to the availability hypothesis where all campaigns are
available from every campaign: ∀si ∈ S : S(i) = S.

10.4.2. Category and employer

An important factor when choosing campaigns can be the tendency of users to stick with
categories of tasks which they are used to and employers which they know judge their
work fairly. Next, we formulate hypotheses incorporating these two aspects.
Category. Crowdsourcing platforms often define a set of categories in order to group
certain types of campaigns (see Section 10.3). Building on the idea that users like certain
types of tasks better than others (for example “interesting” ones as indicated by Aris [17]),
we propose a hypothesis which favors follow-up campaigns of the same category. Let the
category of a campaign si be denoted as cati, and let α define the weight for campaigns
with a category of the same type and β define the weight for campaigns with a category
of a different type, then the corresponding hypothesis is:

P̄α,βcat (sj |si) =

{
α · P̄av(sj |si), if cati = catj

β · P̄av(sj |si), otherwise
(10.5)

For this, we only consider campaigns sj available from the given campaign si ∈ S as
denoted by the factor P̄av(sj |si).
Employers. Furthermore, Schulze et al. [438] have shown that reputable employers are
generally favored. Thus, we define a hypothesis assuming that users are consistent with
regard to their employer when choosing their new tasks. Let the employer of a campaign
be denoted as empi, then we define the employer hypothesis as:

P̄α,βemp(sj |si) =

{
α · P̄av(sj |si), if empi = empj

β · P̄av(sj |si), otherwise
(10.6)

Mixture. While both hypotheses can be a good explanation for how users choose their
next task, we want to combine the two notions. That is, we assume that users choose
from the same employer and at the same time they also like to work on the same type of
tasks, thus also staying consistent regarding the category:

P̄α,β,β
′,γ

cat&emp(sj |si) =


α · P̄av(sj |si), if cati = catj ∧ empi = empj

β · P̄av(sj |si), if cati = catj ∧ empi 6= empj

β′ · P̄av(sj |si), if cati 6= catj ∧ empi = empj

γ · P̄av(sj |si), otherwise

(10.7)
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For the mixture, in this work, we set β = β′ and write P̄α,β,γcat&emp(sj |si).
Skewed probabilities. However, as mentioned in Section 10.3, the overall distribution
of campaigns within categories and by employers is not equally distributed. As a result,
there are significantly more campaigns in some categories. Consequently, more campaigns
of this category will be chosen by workers. This possibly favors the category and employer
hypotheses mentioned above. In order to investigate whether this is true, we also formulate
a hypothesis based on overall category frequencies. Let fi denote the frequency of a
category in our corpus. Then we define:

P̄cat-freq(sj |si) = fj (10.8)

Equivalently, we define P̄emp-freq(sj |si), for employer frequencies. These hypotheses model
the overall probabilities to choose specific categories and employers.

10.4.3. Payment, positions, and time

As has been shown in several studies [e.g., 438, 549], the amount of money to be earned
from a task can be considered a decisive factor in choosing new tasks. In this context,
there are two aspects to cover, namely task payment [549] and hourly earnings [438]. The
former is the amount of money to be payed for finishing a task. The latter also takes into
account the estimated time required to finish a task. Another factor which has been shown
to influence the users’ preferences to choose tasks is the number of available positions of
the campaign [113, 438]. That is, different campaigns provide different numbers of tasks
and users seem to favor campaigns which provide more tasks.
Stratified classes for payment and positions. Both, the payment and the position
factors, have in common that a higher value, i.e., higher payment or more positions,
implies a higher probability to choose the corresponding campaign. Let valuei denote
the corresponding value. A straightforward formulation of a corresponding hypothesis
would be

P̄value(sj |si) = valuei (10.9)

However, when considering the value distributions, we notice that payment as well as
positions are strongly skewed towards low values. In order to model a tendency towards
higher values, we divide the value range into stratified intervals consisting of an equal
number of campaigns. In our case, we choose three different classes: low, middle, high.
For further details, see Section 10.3. Now, let classi denote the class a campaign si is
assigned to. Then the hypothesis is formulated as:

P̄α,β,γlmh (sj |si) =


α · P̄av(sj |si), if classi = low
β · P̄av(sj |si), if classi = middle
γ · P̄av(sj |si), if classi = high

(10.10)

Based on this, we define three hypotheses for payment, payment per hour and positions,
by specifying P̄pay, P̄pph, and P̄pos, respectively.
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Time. In Section 10.3, we have also mentioned the time required to finish a task as
a factor influencing the user when choosing a new task. Tasks estimated to be time
intensive may deter users from choosing it [438]. Assuming normalized time values valuei
in a range from 0 to 1 we define the corresponding hypothesis as:

P̄time(sj |si) = 1− valuei (10.11)

Since we were not able to derive stratified classes for the required time spans, we are not
formulating this hypothesis based on intervals.

10.4.4. Title and description

The category hypothesis assumes that tasks of the same type are chosen consistently.
However, this may not accurately represent the similarity of tasks required for example
to capture the notion of always choosing “interesting” tasks [438]. This is especially true
considering the skewed distribution of campaigns across categories (see Figure 10.1a).
Thus, we further investigate this line of thought by comparing the title and the description
of the campaigns instead of just their categories.
Both the title and the description can be represented as a bag-of-words. Thus, to

compare titles and description, respectively, we employ the cosine distance based on
TF-IDF vectors [30] (we use MLlib3 to calculate the corresponding vectors). Note that
we do not apply any other pre-processing steps like stop-word removal or stemming. Now,
let tfidfi denote the TF-IDF vector of a document, i.e., either a title or the description,
then we define the respective hypothesis as:

P̄cos(sj |si) = cos(tfidfi, tfidfj) (10.12)

For the corresponding hypotheses for the titles and the descriptions, we write P̄title(sj |si)
and P̄desc(sj |si), respectively.

10.5. Results

In order to compare the relative plausibility of the hypotheses introduced in Section 10.4,
we apply the HypTrails approach as outlined in Section 3.3.2 based on the data described
in Section 10.3. The results for the individual hypotheses are reported in Section 10.5.1
through 10.5.4 and visualized in Figures 10.2 and 10.3. We start by assessing the
performance of the uniform hypothesis and different availability assumptions. Since we
will find that the availability assumption based on overlap is the most realistic one, the
following hypotheses are all grounded on availability (i.e., P̄av := P̄overlap). We give a
summarizing comparison of our hypotheses in Section 10.5.5.
Note that, analogously to our case studies in the previous chapters (e.g., Chapters 7

and 9), we scale the concentration factor κ with regard to the number of state spaces (see
Section 3.3.2.3 for details).
3https://spark.apache.org/mllib/, accessed: August 2015
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Figure 10.2.: Comparison of campaign availability models. We compare the different
availability models we defined for reflecting time constraints which apply to compaigns on a
crowdsourcing platform (see Section 10.4.1). We find that availability is best modeled by overlap,
i.e., the user only chooses campaigns which are available upon finishing her last task.

10.5.1. Uniform hypothesis and availability

Since campaigns are only available for a limited amount of time (as long as some tasks have
not been completed), we have introduced several notions of availability in Section 10.4.1.
In this section, we compare the corresponding availability hypotheses: P̄uniform, P̄after and
P̄overlap. Figure 10.2 shows the results. Generally, the uniform hypothesis is the most
unrealistic one, since it assumes that — independent of time constraints — all campaigns
are available from every other campaign. Thus, as expected, it performs worse than
both the P̄after and the P̄overlap hypothesis. When comparing the latter two, the overlap
hypothesis P̄overlap is strongly superior. As outlined in Section 10.4.1, this is due to the
fact that users choose their campaigns in quick succession. Since the overlap availability
P̄overlap is the one which is most plausible in our setting, we use it as the P̄av component
required by our other hypotheses as outlined in Section 10.4. Thus, we are looking for
hypotheses which improve on P̄overlap. Consequently, P̄overlap serves as our baseline.

10.5.2. Category and employer

As introduced in Section 10.4.2, some straightforward hypotheses are those based on the
fact that users may tend to choose campaigns from categories and/or employers which
they already know. In this section, we compare different category and employer-based
hypotheses. First we investigate whether users tend to pick campaigns from the same
category or the same employer. Afterwards we combine both factors.

Individual results. Figure 10.3a shows the results for categories and employers sepa-
rately. Independent of the respective parameters, both hypotheses are superior to the
availability hypothesis indicating that users tend to stay within the same category and
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(b) Payment, positions and time
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(c) Title and descriptions
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Figure 10.3.: Comparison of hypotheses on task choosing behavior. In this figure, we
show the results for different hypothesis types. (a) compares different campaign category and
employer hypotheses, (b) focuses on hypotheses based on payment, available tasks per campaign
(positions) as well as the time required to finish a task, and (c) depicts evidence values for
description and title based hypotheses. In (d) we compare the best hypotheses of each category.
We find that staying with the same employer is a strong influencing factor when choosing
campaigns directly, followed by the description based hypothesis.
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prefer campaigns from the same employer. For both hypotheses we initially set parameters
so that moving to the same category or employer is two times as likely as moving to a
campaign from another category or employer (α = 1, β = 0.5). We experimented with
different parameter values and found that further favoring the same categories/employers
increases the plausibility of the hypothesis up to a certain point. In Figure 10.3a, we
also show the best parameter settings we have found. The results indicate that users
strongly favor the same categories and employers. We further note that staying with the
same employer is a more plausible hypothesis, i.e., because we find greater evidence for it
and also because a stronger focus on the same employer can be set (β = 0.01) before the
evidence is decreasing again. This is in line with the findings of Schulze et al. [438], who
report a tendency to choose campaigns from reputable employers.

Mixture. Since both (hypotheses based on categories and hypotheses based on employers)
perform well, we investigate if a combination of both, as mentioned in Section 10.4.2, can
further improve our results. And, indeed, we find that strongly favoring campaigns from
the same category and the same employer (α = 1), reducing the weights for choosing either
the same campaign or the same employer (β = 0.025), and setting the weight for totally
different campaigns rather low (γ = 0.0046825), results in the most plausible hypothesis
so far. We have also tried setting different parameters for only favoring one of the two,
category or employer (by using β, β′), which only resulted in marginal improvements.

Skewed probabilities. As mentioned in Section 10.3, the overall probabilities of
campaigns within categories and from employers is not a uniform (cf. Figure 10.1a). Thus,
we defined hypotheses based solely on employer and category frequencies in Section 10.4.2
(P̄cat-freq, P̄emp-freq) to contrast the category and employer hypotheses evaluated above.
We find that, both hypotheses perform worse than the hypotheses which stick to the same
category or employer. This shows that the corresponding, previously observed tendency
does not stem from skewed category or employer frequencies.

Summary. Overall, we can conclude that the idea that users choose campaigns from
the same category and the same employer can indeed explain parts of the campaign
transitions we observe. Particularly, the employer is an important factor.

10.5.3. Payment, position, and time

As introduced in Section 10.4.3, we also consider several hypotheses based on payment,
available positions per campaign, and the time required to complete a task. To this end,
we directly use the values of payment, payment per hour (pph), positions and the inverse
of the required time. The results are shown in Figure 10.3b. All of these hypotheses
perform badly compared to the overlap hypothesis. This is due to their skewed value
distributions which have a strong tendency towards small value ranges, cf. Section 10.3.
Thus, we introduced three stratified classes for payment, pph and required time in order
to model a tendency to pick low, average or high prices. We weight these classes as follows:
low = 1, average = 2 and high = 3. We observe, that all the resulting hypotheses,
even if marginal, have a greater evidence than the uniform hypothesis on overlapping
availabilities (while the payment classes are hardly distinguishable in the graph, evidence
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values actually do differ significantly from those of the overlapping availability hypothesis).
Thus, confirming the findings of Chilton et al. [113], Schulze et al. [438], and Yuen et al.
[549], we conclude that all of these factors play a role in choosing campaigns. However,
we were not able to derive a hypothesis based on the “required time for a task” explaining
the corresponding influence factor found by Schulze et al. [438].

10.5.4. Title and description

As introduced in Section 10.4.4, we also compare similarities between the title and the
descriptions of the campaigns. The results are shown in Figure 10.3c. Both hypotheses
clearly perform better than the baseline hypothesis assuming a uniform distribution over
all overlapping campaigns (P̄overlap). This is a strong indicator that both, the title and
the description, and thus the semantic content of the task to complete, are a decisive
factor for choosing campaigns. Note though, that the similarity based on the title clearly
performs worse than the similarity based on descriptions. This can be interpreted by the
fact that while a certain type of campaign will have the same description, the title may
differ. For example, consider a campaign whose goal is to annotate a certain corpus of
documents. While the description might be the same, the title for one campaign might be
“Annotating Literature”, while the other might be “Annotate 10 Research Papers”. The
description based hypothesis captures the similarity of those two campaigns, while the
title based hypothesis does not.

10.5.5. Summary

For an overall comparison, we show the best hypotheses of each category in Figure 10.3d.
We observe that three hypotheses yield especially high marginal likelihood values, that is,
the mixture of category and employer performed best, followed by the hypothesis solely
based on employers, and the hypothesis based on description similarities. The hypotheses
based on payment and positions hardly improve on the uniform overlap hypothesis. The
hypothesis based solely on categories performs worse than the description based hypothesis
but better than the hypotheses based on payment and positions.
Categories and employers. The fact that the category hypothesis performs significantly
worse than the employer hypothesis, and that combining the employer hypothesis with
categories only marginally improves the evidence, is an indicator that users primarily
choose campaigns from the same employer instead of focusing on categories. Yet when
they have chosen their employer they prefer to stay within the same campaign category.
Overall, the large evidence values for employer-based hypotheses are in line with results
found by Schulze et al. [438]. They imply that workers are loyal to reputable employers
when choosing campaigns: since employers rate the completed tasks by their quality, and
only good ratings result in money being payed, workers prefer employers who rate fairly.
Payment, position, and time. The result that the payment and positions hypotheses
perform badly seems counter-intuitive. This might be due to the fact that users optimize
for certain types of tasks and can earn more money when they stay at the same employer
and within the same category accounting for the high plausibility of the corresponding
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hypotheses. Also, Aris [17] finds that payment in general is not a consistent factor
influencing how users choose their tasks. Schulze et al. [438] and Schnitzer et al. [437] even
find that at least US workers (which we have focused on here) are not mainly interested in
the amount of money they earn for completing a campaign. However, the bad performance
may also be due to the way we model the corresponding hypotheses. For example, we
have noticed that directly incorporating the payment value into the hypothesis does
not perform well (see Section 10.5.3). Now, while the stratified classes reveal a certain
tendency to choose well payed campaigns or campaigns with many positions, the resulting
increase in evidence is not as large as could be expected. Thus, we might not capture
the influence of payments or positions correctly. That is, different classes or different
weighting strategies might result in better hypotheses. Also, the payment may strongly
interact with other factors like the tendency to choose similar tasks as mentioned before.
Regarding these issues, we will propose ideas for further research in the discussion section.
Title and description. Finally, the good performance of the description based hypoth-
esis is an indicator that users not only choose from within the same campaign, but also
try to choose similar campaigns with regard to the actual task they have to work on. One
reason for this might be that familiar tasks are easier and more quickly to handle than
unknown ones. This may also be a result of users choosing similar tasks based on their
area of interest as suggested by Aris [17]. Note that the description hypothesis might
strongly overlap with the employer hypothesis since the same employer may often use
the same description for her campaigns of a similar type. This needs to be investigated
further.
Overall. We studied a considerable amount of hypotheses partially motivated by related
work using methods solely based on data from the crowdsourcing platform Microworkers
and without resorting to error-prone and possibly biased user studies. In the process,
we focused on US workers and were able to show from observed task transition data
that most factors found in literature indeed influence the process of how workers choose
campaigns. Employer and description based hypotheses worked best. Whereas hypotheses
based on payment only showed a marginal influence on how users choose their tasks.

10.6. Discussion

We have tested several hypotheses about how users choose their campaigns on the
crowdsourcing platform Microworkers. In this section, we give a short overview of
particular limitations of our approach and propose possible future work.
Data. First of all, the dataset we are using is limited to workers from the US. This is
because users from the US are free to choose nearly all campaigns. For non-US workers
many campaigns are not available. Thus, incorporating non-US workers would introduce
restrictions on transitions which can not be directly modeled using the original HypTrails
framework [453]. Additionally, for example, Schulze et al. [438] and Schnitzer et al. [437]
suggest that there may be strong differences between certain user groups, e.g., from
different countries. Thus, in further studies it might be useful to actively incorporate
different user groups, e.g., by applying MixedTrails (cf. Chapter 4).
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Furthermore, we are evaluating our hypotheses on only one dataset. It would be
interesting to check if the hypotheses behave similarly on different crowdsourcing platforms.
Hypotheses. While we have studied quite a few different hypotheses, there are more to
consider. For example, it might be interesting to study if users tend to prefer recently
created campaigns as suggested by Chilton et al. [113]. Also, Aris [17] implies that
intrinsic factors are more important than extrinsic ones. In this work, we have mainly
focused on extrinsic ones.

Furthermore, we have only combined the category with the employer hypothesis. Other
combinations might yield better results. Also, we have not checked how the hypotheses
are related to each other in a sense that the features used to build them are correlated.
An example would be that the same employer will often use similar descriptions for her
campaigns. Thus, as mentioned in Section 10.5.5, the description hypothesis might be
correlated to the employer hypothesis. This needs further investigation.

Finally, the payment, positions and time related hypotheses did not yield good results
when compared to category or employer based hypotheses. While there are explanations
in literature [17, 438], this may also be due to a poor understanding of how these factors
influence the choice of campaigns. We have approximated the influence using three
stratified classes. Other approaches might be more appropriate.
Availability. One limitation of HypTrails is that it is not built to model states that
are only available at certain time intervals. We solved this by introducing the notion of
availability. In our scenario, we used local availability (from a specific campaign to other
campaigns) based on time intervals. However, this approach is an approximation. Further
research may find a better solution in corporate such time-dependent availability into
HypTrails and/or in the process of formulating hypotheses.

10.7. Related work

The motivation of working on crowdsourcing platforms in general and the preferences
of selecting tasks are the subject of several studies. Most of this research is based on
user surveys leading to varying answers depending on the way questions are asked, and
consequently limiting the understanding of the respective influence factors [438]. However,
the influence factors derived form such studies can be used for formulating hypotheses
about how users choose their tasks, which we objectively evaluated in this case study.
Aris [17] reviewed research results of motivational factors of participation in the area

of mobile crowdsourcing. In contrast to the Microworkers platform investigated in this
study, the platforms and services analyzed by Aris were from the field of creative tasks:
for example, participating in innovation contests, generating news content, or even more
specialized social tasks like assisting foreign visitors in Japan. The main influence factor
in the reviewed studies was found to be “personal benefit”, which can be categorized into
intrinsic and extrinsic motivation. Intrinsic motivation is given if a task is fun, a new
experience is gained, or because it is challenging, whereas extrinsic motivation describes
participation based on awards like points or a monetary reward. Overall, Aris found that
intrinsic aspects are more important than extrinsic aspects. Furthermore, Aris recognized
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that the results about monetary rewards were not consistent. It can be assumed that
— similar to the case of mobile crowdsourcing — users on micro tasking platforms (like
the Microworkers platform we study in this case study) are also affected by intrinsic and
extrinsic factors.
Indeed, a model for the workers’ motivation by Kaufmann et al. [275] confirmed the

importance of intrinsic aspects on Amazon Mechanical Turk (MTurk). At the same
time, extrinsic factors have were found to be relevant. Such factors include task related
factors as well as motivation based on learning and training skills. Regarding extrinsic
factors, Chilton et al. [113] also found that task related properties and characteristics,
like the creation date or the overall number of tasks, provided by a campaign, influence
the selection of tasks. The results were based on the analysis of data scraped from MTurk
and a survey about the workers’ task searching behavior.
In contrast to Aris and Kaufmann et al., the user study of Yuen et al. [549] showed

that a high monetary reward is the most important task selection criterion. In addition,
the workers answered that they chose their work based on the nature and the difficulty of
the different tasks.
Finally, Schulze et al. [438] observed that the preferences and influence factors differ

with respect to the location of the workers: For workers from the United States, the
most important aspect for selecting a task was their interest in it. This was followed
by payment, the simplicity of tasks, and a high reputation of the employer. In contrast,
Indian workers preferred well payed and simple tasks.

Schnitzer et al. [437] confirmed this observation by a user study about worker demands
on task recommendation. Here, the similarity of tasks is the most important task property
for workers from the United States, whereas Asian and European workers were mostly
interested in tasks offering the highest monetary reward.

Overall, there are many factors influencing the selection of new tasks in crowdsourcing
environments. Some results are even contradictory. However, in contrast to this case
study, none of the cited papers conducted an objective comparison of the proposed factors.

10.8. Conclusion

We studied how users choose their next task on the crowdsourcing platform Microworkers.
To this end, we formulated different hypotheses about the underlying processes based on
properties like the similarity of campaign descriptions, categories, employers, or payment
information. In the process, we developed an approach to cope with temporal aspects
with regard to availability of states in the underlying Markov chain, i.e., campaigns in our
crowdsourcing environment. Then, utilizing campaign transition data from Microworkers,
we objectively compared the resulting hypotheses by means of the Bayesian approach
HypTrails. While the results highly depended on how hypotheses are formulated, in
our scenario, combinations of category and employer as well as the description-based
hypothesis worked best. Overall, instead of using survey-based investigations — as similar
studies do — we successfully applied the Bayesian method HypTrails to objectively
compare hypotheses about how users choose their next campaign solely on data already
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available from the crowdsourcing platform. This is a significant step forward in providing
crowdsourcing companies with the means to gauge the preferences and the behavior of
their users in order to optimize their platforms, e.g., by incorporating the knowledge
gained about these factors into task recommendation systems.
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In this section, we study three more domains where human navigation behavior can be
observed, i.e., geo-spatial navigation when exploring urban noise pollution, navigation on
Wikipedia pages, and listening behavior on the last.fm music service. These are small
scale studies aimed at providing further insights into human navigation, as well as at
illustrating the application of MixedTrails (Chapter 4) and SubTrails (Chapter 5).

11.1. Noise pollution exploration

In this small scale case study, we explore the difference of navigation processes in different
application scenarios. In particular, we compare the extensively studied photowalking
behavior of Flickr users as covered in Chapter 7 with the navigational processes in the
context of exploring noise pollution. To this end we focus on the city of London and find
fundamental differences in behavioral characteristics.

Data. For the data on photowalking we use the same data as in Chapter 7. For the
noise pollution measurements, we employ data from the WideNoise application of the
EveryAware platform (cf. Section 6.3.3) which consists of overall 62,216 measurements
collected from 08.11.2011 to 15.08.2017 by 18,350 devices. We limit these measurements
to a bounding box around London as already mentioned in Table 7.1 leaving 2,798
measurements. Similar to the photos used for the photowalking case study in Chapter 7,
we group these measurements by device id1) and sort them according to the time the
samples have been recorded. This results in 352 noise trails with an average length of
6.95.

Experimental setup. Overall, the experimental setup is identical to the photowalking
case study in Section 7.4.1, i.e., we employ a grid of 200m by 200m on a bounding around
London (cf. Table 7.1). With regard to hypotheses, we use three major hypothesis
classes introduced in Section 7.3, namely the center, the POI (points of interest), and
the proximity hypothesis. The center hypothesis represents the belief that the next noise
measurement will be taken close to the city center independent of the current location.
The POI hypothesis represents the belief that the next noise measurement will be taken in
an area with many points of interest, again independent of the current location. And the
proximity hypothesis represents the belief that the next noise measurement will be taken
somewhere close to the last measurement according to a Gaussian spreading function. For
details, please see Section 7.3. We compare each hypothesis class using several different
parameter settings (as in the Berlin case study in Section 7.4.1.1 but focusing on London).

1Device ids are always set, while user ids only exist when the user is logged in.
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Figure 11.1.: Comparison of photowalking behavior and noise exploration in Lon-
don. This figure visualizes the results for several navigational hypotheses in London based on
photowalking behavior (left) and noise exploration (right). We visualize the center, the POI, and
the proximity hypothesis analogously to Chapter 7. For the noise exploration behavior, the center
and the POI hypothesis exhibit a stronger tendency towards larger spreading factors while the
proximity hypothesis prefers smaller spreading factors. This indicates fundamental differences of
navigational behavior in the different contexts.
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Results. We compare photowalking behavior (PB) and noise exploration (NE) in London
based on the center, POI, and proximity hypotheses introduced above.

For the center hypothesis the various parameter settings perform differently for PB and
NE. In particular, the center hypothesis with a spread of 3km performs best for PB while
a spread of 10km shows the best marginal likelihoods for NE with increasing concentration
factors (κ). In combination with the fact that, for NE, the center hypotheses do not
outperform the uniform hypothesis as clearly as for PB, this points to a less prominent
tendency to stick to the city center for people who explore the noise environment of
London. A similar phenomenon can be observed when comparing the marginal likelihoods
of different parameterizations of the POI hypothesis: For NE, the POI hypotheses can
not improve on the uniform hypothesis as strongly as in the case of PB, and, generally,
larger spreads are favored for NE than for PB.
This tendency of NE for larger spreads for both hypotheses (center and POI), can

most likely be explained by the inherent procedural differences of taking photos of a
city and using WideNoise to explore noise. Photos are mostly taken by visitors and
tourists, thus, concentrating on the city center and points of interest (POI). Similarly,
locals also often focus their intereset on the same areas. This explains the comparably
strong performance of both hypotheses in the case of PB. In contrast, when exploring
noise pollution, people are more interested in their personal environment or hotspots
relevant to them. Consequently, this is mostly focused on areas other than the city center
or areas with POIs, which explains the tendency to favor larger spreads and the less
prominent improvements of the informed hypotheses (center, POI, proximity) on the
uniform hypothesis for NE.

The center and the POI hypotheses already clearly point towards significant differences
of navigation behavior in the context of PB and NE. The proximity hypothesis further
supports this observation. In particular, in comparison to PB, small spreads are strongly
favored and specifically the hypothesis with a spreading factor of 400m performs excep-
tionally well for NE. Nevertheless, overall, the marginal likelihoods for the proximity
hypotheses are the highest of the compared hypothesis classes. This indicates that the
process of NE, generally, favors a tendency of users to stay close to a current location
before taking the next measurement.

Thus, we observe that while PB and NE have inherently different navigational charac-
teristics — with NE focusing on more narrow spreading factors — the overall tendency of
humans to stick to close by locations is a stable concept.

Conclusion. In this case study, we showed that different navigational contexts exhibit
fundamental differences with regard to several principles of human mobility. In particular,
we observed that while a tendency to move towards the city center or POIs was an
adequate explanation of photowalking behavior, those hypotheses were less viable for
noise exploration processes. In contrast, a proximity component can be considered to be
equally applicable to both scenarios even if with differing parameterizations (Gaussian
spreading radius).

Note that this small scale case study is preliminary work due to several factors including
the limited amount of data used to study noise exploration processes or the small number
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of compared hypotheses and applied methods compared to Chapter 7. Even though, the
observed results still give rise to the question if varying navigational contexts exhibit
comparable differences and similarities. Thus, we aim to extend this study and encourage
future work in this direction.

11.2. Exploration and homing-in phases on Wikipedia

Wikispeedia [519] is a game in which players aim to find the shortest path from a randomly
given start article to a randomly given target article within Wikipedia by only navigating
the available hyperlinks. In the context of this game, West and Leskovec [519] have
hypothesized that “humans navigate more strongly according to degree in the early game
phase, when finding a good hub is important [in order to be able to increase the amount
of reachable concepts], and more strongly according to textual similarity later on, in the
homing-in phase [when trying to find the actual target concept]”. Here, we confirm this
hypothesis using MixedTrails.

Data. Wikispeedia is based on a subset of 4,600 Wikipedia articles (from the 4,600-article
CD version of “Wikipedia for Schools”2). A corresponding dataset [520] is freely available3.
It consists of the plain text of each article, the link network, and a set of click sequences
(including back clicks) created by participants playing the game. Like West and Leskovec
[519], we remove back clicks (but keep the corresponding forward clicks which are undone
by these back clicks) and then only keep click sequences of length 3 to 8 (number of clicks).
The resulting dataset consists of over 25,000 click sequences with an average length of 5.6.

Hypotheses. To investigate the hypothesis by West and Leskovec [519], we consider
two transition probability matrices: φdeg represents the hypothesis that people are trying
to get to hubs in order to increase the number of concepts they can reach. Thus, if
a link between a source article to a destination article exists, we set the belief in the
corresponding transition proportional to the degree of the destination state (calculated
as the sum of its in- and out-going links); and zero otherwise. Second, the transition
probability matrix φsim assumes a higher transition probability if there is a strong textual
similarity between two articles. Again, we set the transition probability to 0 if there is no
link between two articles. Otherwise, we set the belief in a transition proportional to the
cosine similarity cos(i, j) with respect to the corresponding TF-IDF vectors. For that,
we removed words with a document frequency of over 80% and applied sub-linear scaling
to the TF values.4 For comparison, we additionally consider the link matrix φlink that
expresses equal belief in all transitions for which a link exists.

Now, the first three hypotheses are homogeneous hypotheses assigning transitions to a
single group: Hlink = (γone,φlink), Hdeg = (γone,φdeg), Hsim = (γone,φsim). Furthermore,

2available at schools-wikipedia.org (version of 2007)
3https://snap.stanford.edu/data/wikispeedia.html
4Differing from our approach, West et al. [520] use the similarity between the clicked article and the
target concept cos(i, t), but report that along the game progress, the similarity of the current and the
clicked/next article is qualitatively similar. Thus, we use the latter approach since we can only use
information from already visited states, not future states.

200

schools-wikipedia.org
https://snap.stanford.edu/data/wikispeedia.html


11.2. Exploration and homing-in phases on Wikipedia

100 101 102 103 104 105 106

concentration factor (K)

−0.9

−0.8

−0.7

−0.6

−0.5
m

a
rg

in
a
l 
lik

e
lih

o
o
d

1e6

link

sim

deg

sim,deg

deg,sim

Figure 11.2.: Comparison of hypotheses on search trails on Wikispeedia. For the game
Wikispeedia, players try to quickly navigate from one article to another using the underlying link
structure of Wikipedia. One hypothesis (deg,sim) is, that to achieve this, players will first navigate
to articles with a large degree, and then “home-in” on their target using similarity based navigation.
The graph shows the results of modeling this heterogeneous hypothesis using the MixedTrails
approach by splitting each click sequence at their second click. We also compare against several
other homogeneous as well as heterogeneous hypotheses. Overall, of all the considered hypotheses,
the heterogeneous deg,sim-hypothesis works best (for growing concentration factors), even though
the initial split (low concentration factors) is not inherently advantageous. Note that, while the
differences may seem marginal, they are decisive.

Hdeg,sim and Hsim,deg are heterogeneous hypotheses that group transitions based on their
position on the trail of articles left by users playing the game: the first two transitions
are assigned to the “initial phase”, and the rest of the transitions are assigned to the
“homing-in phase”. We name the corresponding group assignment probabilities γphases.
The heterogeneous hypotheses are then defined as: Hdeg,sim = (γphases, (φdeg,φsim))
and Hsim,deg = (γphases, (φsim,φdeg)) assuming the degree and the similarity transition
probability matrices to explain the “initial phase”, respectively.
Results. Figure 11.2 shows that, as literature hypothesized, the heterogeneous hypothesis
Hdeg,sim explains the navigational behavior of players better than all other considered
hypotheses. While the additional variables introduced by the split (by means of Occam’s
Razor) result in lower marginal likelihoods compared to the homogeneous hypotheses for
weak believes (low values of the parameter κ), it becomes apparent that the transition
probability matrices of Hdeg,sim are modeling the corresponding movement behavior in
each group better than the single transition probability matrix of the homogeneous
hypotheses on the overall data. At the same time, the “opposite” hypothesis Hsim,deg
results in the lowest ML values even though it uses the same split as Hdeg,sim. Among
the homogeneous hypotheses, the similarity based hypothesis is the most plausible. By
contrast, as it yields rather low marginal likelihood values, the degree hypothesis Hdeg
seems to be a very specialized hypothesis, which is applicable only for a specific subset of
transitions—such as the first transitions in each sequence.
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11. Small scale case studies

Conclusion. Overall, this example supports the claim by West and Leskovec [519] that
there is an exploration and a homing-in phase when users search specific articles on
Wikipedia; at least within the game environment of Wikispeedia. Furthermore, our results
demonstrated the applicability of MixedTrails to a real world scenario. That is, we saw
that a more fine-grained, heterogeneous hypothesis may explain the observed sequential
data better than using a single, overly general, homogeneous hypothesis.

11.3. Exceptional listening behavior on the last.fm music
service

In this case study, we analyze data from the last.fm music service. In particular we interpret
playlists as trails over songs and use our method for finding subgroups with exceptional
transition behavior (Chapter 5) to discovery subsets of the data with interesting music
listening behavior.
Data. We use the 1K listening data5 containing the full listening history of 1, 000 last.fm
users featuring more than 19, 000, 000 tracks (songs) by more than 170, 000 artists. With
this data, we study sequences of music genres (such as rock, pop, rap, classical, etc.) of
songs that users listened to, focusing on a list of 16 main genres. Since genre information
is difficult to obtain on a track-level, we labeled each track with the best fitting genre for
the respective artist as obtained by the EchoNest API6. In doing so, we could determine
genres for more than 95% of the tracks. We then constructed genre transitions for
each user based on the sequence of tracks she had listened to. We filtered subsequent
tracks of the same artist to remove cases where the user listened to all songs of a single
album. Additionally, we removed all transitions with unknown source or target state
(genre). Thus, we obtained a dataset of 9, 020, 396 transitions between tracks. Background
knowledge includes user information about age, gender, origin and the year of sign-up to
last.fm, and the point in time the source song of the transition was played, i.e., the hour
of the day, the weekday, the month and the year.
Experimental setup. On the data described above, we applied our approach twice to
find subgroups with exceptional transition behavior: once for subgroups described by a
single selection condition only (e.g., Country=US), and once including combinations of
two selection conditions (search with depth 2, e.g., # Tracks >=79277 ∧ signup=2005).

As selection expressions for subgroup descriptions, we used all attribute-value pairs for
nominal attributes, and all intervals obtained by equal-frequency discretization into five
groups for numeric attributes. This allowed to generate 86 selection conditions.
For computing the interestingness measure, we used r = 1, 000 random samples. We

confirmed our top results to be statistically significant on an α = 0.01 level using the
procedure presented in Section 5.2.2.

5http://ocelma.net/MusicRecommendationDataset/index.html
6http://developer.echonest.com/
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11.3. Exceptional listening behavior on the last.fm music service

(a) All transitions (b) Users from the United States

(c) Users from Finland

Figure 11.3.: Exceptional transition models of last.fm users. The figures show transitions
between music genres: stronger arrows represent higher transition probabilities. (a) shows all
transitions in the data, (b) and (c) illustrate the differences of transition models in two exceptional
subgroups. Green arrows indicate that transitions are more probable in the subgroup than in the
overall dataset, red arrows the contrary. For instance, it can be observed in (b) that users from
the US are more likely to listen to Reggae after World music; (c) shows that Finnish users have
higher transition probabilities to Metal. Insignificant differences are removed for visibility.
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Table 11.1.: Top subgroups for the last.fm dataset. For each subgroup, we show the
number of instances covered by this subgroup, the interestingness score qtv, the weighted total
variation ωtv, and the unweighted total variation ∆tv.

(a) Single selection conditions only.
Description # Inst. qtv (score) ωtv ∆tv

Country = US 2,576,652 420.37 ± 9.67 326,435 1.44
Country = Finland 384,214 408.37 ± 8.89 132,378 3.05
Country=Argentina 174,140 360.22 ± 8.62 84,285 4.54
# Tracks > 79277 1,803,363 355.27 ± 8.39 249,634 1.61
Country = Poland 378,003 346.09 ± 7.37 122,155 3.35

(b) Including combinations of selection conditions.
Description # Inst. qtv (score) ωtv ∆tv

# Tracks >=79277 ∧ signup=2005 617,245 425.59 ± 9.30 186,048 3.38
# Tracks >=79277 ∧ age = [23–24] 155,998 421.67 ± 9.78 89,769 4.67
Country = US 2,576,652 420.37 ± 9.67 326,435 1.44
Country = Finland 384,214 408.37 ± 8.89 132,378 3.05
# Tracks >=79277 ∧ signup=2006 658,135 398.40 ± 8.74 182,690 3.38

Results. Results for single selection conditions are displayed in Table 11.2a. We can see
that the country of origin of users is an important factor: the majority of top subgroups
is described by this attribute. Specifically, users from the United States, from Finland,
and from Argentina exhibit transitions between music genres that are unusual compared
to the entire data. By contrast, date and time influence the transitions between genres
only little and do not describe any of the top subgroups. For subgroups described by
combinations of conditions, see Table 11.2b, we can see that users with a high number of
tracks show unusual transition behavior, especially if they signed up to the system early,
or if they are in a certain age group.
Figure 11.3 visualizes differences in transition behavior in comparison to the overall

dataset for two top-subgroups. Here, each node represents a state (genre). The first graph
gives an impression on the transition probabilities in the entire dataset. Stronger arrows
represent higher probabilities. We omit probabilities below 0.1. The next two graphs show
deviations from these probabilities in the subgroups Country=US and Country=Finland.
Green arrows indicate transitions that are more likely in the subgroup than in the overall
data, red arrows imply less likely transitions. Stronger arrows represent higher deviations;
small deviations (< 0.05) are omitted.
We observe that users from the US and Finland deviate from the overall behavior in

characteristic ways. For example, users from the US tend to skip to Rock more often, while
the same is true for users from Finland with regard to Metal. Also, we observe interesting
dynamics between genres that go beyond the different target state distributions: for
example, users from the US are more likely to listen to Reggae after a song from the
World genre, while the preference for Rock decreases in this case. We can also see, that
although Rock is overall more popular in the US, it follows a track of Reggae less likely
than in the entire data.
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Conclusion. In this case study, we showed the heterogeneous nature of music listening
behavior. In particular, using SubTrails (cf. Chapter 5), we were able to identify typical
stereotypes like the preference of people from Finland for the Metal genre in their playlists
(cf. Purhonen et al. [407]). Besides the results from Section 7.4.2, this demonstrates the
applicability of SubTrails on real-world data.
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12. Conclusion

In this thesis, we contributed to understanding human navigation by proposing novel
methods for explaining its underlying processes as well as by conducting a wide variety
of case studies. In particular, we addressed the challenges of hypothesis comparison
and conception with an explicit focus on the inherently heterogeneous nature of human
behavior (cf. Section 1.2). For this, we introduced novel methodology and supplemented
current literature by studying human navigation behavior in geo-spatial contexts as well
as on the web. In the following, we briefly summarize our contributions and conclude
with an outlook on future work.

12.1. Summary

This thesis has three main parts. In Part I, we covered basic information including related
studies in the field of human navigation analysis as well as the methodological foundations
we use and extend throughout this work. In Part II, we introduced our main contributions,
i.e., novel methods for analyzing human navigation behavior explicitly focusing on the
heterogeneity of navigational processes. And finally, in Part III, we applied existing and
novel methodology to a diverse field of different application scenarios. In the following,
we briefly sum up each part.

Part I: Background. The background consists of two chapters, i.e., Chapters 2 and 3:
In Chapter 2, we reviewed a broad spectrum of studies concerning human navigation

behavior in the geo-spatial context as well as on the web. We covered early work,
modeling aspects, as well as regularities and patterns. Furthermore, we specifically
targeted heterogeneity inherent to human navigation behavior since our methodological
contributions are centered around this aspect.
Chapter 3 introduced the methodological foundations which we use throughout this

work. This included a short introduction of the framework of discrete navigation behavior
in combination with background information which we use as the foundation of this thesis.
Afterwards, we covered several other methods and approaches we applied and extended
including Markov chains, exceptional model mining, as well as hypothesis comparison
using HypTrails. The latter was especially emphasized, since we extended it in Chapter 4
and applied it heavily throughout our case studies in Part III.

Section 1.3.1: Novel methods. On the methodological level, we introduced several
novel methods to study and understand human navigation behavior especially focusing
on its inherent heterogeneity. In particular, we described MixedTrails for formulating and
comparing heterogeneous hypotheses (cf. Section 1.2.1) as well as SubTrails for discovering
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subgroups with exceptional transition behavior supporting the process of hypothesis
conception (cf. Section 1.2.2).

Chapter 4 covers MixedTrails which we developed for understanding the heteroge-
neous processes of human navigation. It extends existing methodology by allowing the
formulation and comparison of heterogeneous hypotheses about transition processes in
sequential data based on a Bayesian approach. MixedTrails provides a straightforward
way to formulate such hypotheses and, thus, enables the comparison of a very flexible set
of ideas and intuitions by incorporating a large variety of background information.

Our second contribution to understand heterogeneity of human navigation, called Sub-
Trails (Chapter 5), supports the processes of conceiving new hypotheses for understanding
navigation: It provides the methodology for automatically discovering subgroups with
exceptional transition behavior. In contrast to MixedTrails, where holistic hypotheses
about heterogeneous sequence data are formulated and compared, SubTrails aims at
finding subgroups which differ from the overall dataset with regard to how users transition
between different states. By using background data to build and describe such subgroups,
the found patterns are easily interpretable. While not leading to overall explanations
of the observed data, SubTrails gives various insights into the underlying heterogeneous
processes and can stimulate new ideas for more general hypotheses.

In addition to MixedTrails and SubTrails, Part II also introduced several analysis tools
useful for the comparison as well as the conception of hypotheses about human navigation
(see Chapter 6). This includes SparkTrails (Section 6.1), a distributed implementation
of the HypTrails approach, the VizTrails toolbox (Section 6.2), for visualizing transition
behavior in geo-spatial contexts, as well as the EveryAware platform (Section 6.3), a
system to actively support participatory sensing campaigns by providing functionality to
collect, explore, and analyze sensory as well as subjective data.

Part III: Case studies. In Part III, we extensively applied HypTrails [453] (cf. Sec-
tion 3.3.2) as well as our own novel methodology to a variety of application domains.
This includes studies on geo-spatial data, i.e., photo trails from Flickr, as well as a
participatory sensing campaign, navigation on social tagging systems, the process of
choosing campaigns on a crowdsourcing platform, and more. In the process, in line
with the challenges formulated in Section 1.2, we developed approaches for coping with
application specific subtleties like continuous observations or temporal constraints and
study the inherent heterogeneous nature of human behavior.

On the geo-spatial photo trails studied on Flickr (Chapter 7), we found that proximity
is a good explanation for human behavior across several cities. In particular, humans seem
to prefer to consecutively take photos at proximate POIs that are popular on Wikipedia.
We furthermore analyzed the same data using SubTrails and MixedTrails in an integrated
experiment finding and modeling subgroups with exceptional behavior, e.g., tourists and
locals. In the processes of this study, we had to cope with the continuous nature of
geo-spatial navigation.
Similar to the photowalking experiments, we also investigated geo-spatial human

behavior in Chapter 8, where we focused on data from a participatory sensing campaign
collected using the EveryAware platform from Section 6.3. We found characteristic
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explorative navigation processes, based on the different phases of the campaign. Here,
in addition to continuous observations, the temporal density of measurements had to be
taken into consideration in order to formulate sensible hypotheses.

In Chapter 9, we switched from the geo-spatial domain to studying human navigation on
the web. In particular, we analyzed navigation behavior of users in a social tagging system
and found semantic components in the underlying processes of the studied subsets of the
user population. While different genders did not exhibit significant behavioral deviations,
short-term users, as well as different tagging types, followed certain behavioral patterns
matching their individual characteristics. Our results even indicated that navigation
behavior and tagging pragmatics are connected.

Additionally, we analyzed the process of choosing tasks in a crowdsourcing environment
(Chapter 10). Previous studies are mostly survey-based while we formulated explicit
hypotheses which we compared based on sequential data produced by users of the
Microworkers platform. Our results show that users mostly stick to categories and
employers or choose semantically similar tasks. Also, since crowdsourcing campaigns are
only available until all their tasks have been completed, we developed an approach to
cope with such temporal constraints.
Finally, in several smaller case studies (Chapter 11), we analyzed human navigation

behavior in the context of exploring urban noise pollution, and used MixedTrails and
SubTrails to study navigation of Wikipedia users when searching for specific articles, and
music sequences from the music listening portal last.fm.

12.2. Outlook

In this thesis, we covered several novel methods for exploring, analyzing, and understanding
human navigation behavior especially focusing on its inherently heterogeneous nature
(Part II) and applied them in a variety of application scenarios (Part III). Our work is
extensive in both areas and, thus, inspires several lines of future work. We

Methodology. HypTrails and MixedTrails provide a powerful framework for comparing
a wide range of hypotheses about human navigation behavior. However, the foremost
limitation of these approaches is that ideas and intuitions already need to exist. While
explorative approaches — like the proposed SubTrails method — somewhat help to
discover certain sub-processes, thus possibly inspiring new theories, they still do not result
in overall explanations of the observed data. In this context, approaches with clustering
characteristics may be helpful [e.g., 171]. However, usually such methods do not yield
interpretable results out of the box or are limited in their use of available background
information. Future work may address this issue and develop methods which can take
into account a wide variety of background data and automatically extract explanations
for human navigation behavior with regard to heterogeneous aspects as well as various
navigation characteristics.

Also, for HypTrails as well as MixedTrails, even if the idea for several hypotheses exists,
formulating them is a challenging task. While they provide a very flexible framework to
incorporate many different aspects of human navigation behavior including a wide array
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of background information, they require very exact specification and possibly tedious
parameter tuning. In this context, it may be possible to formulate hypothesis on a more
abstract level, that is, leaving the parameters unspecified or at least setting a prior to bias
them, instead of defining and comparing the parameter settings as separate hypotheses.
It may even be possible to allow formulating hypotheses in a more general, possibly
non-parametric framework, automatically adapting the underlying model beyond the
current Markov chain approach. However, while this would better represent probabilistic
dependencies, it most likely will increase the complexity of interpreting the results.
Sensible trade-offs will have to be investigated.
Case studies. With regard to case studies, we only scratched the surface of the
experiments enabled by our methodological contributions. For example, we are sure that
there are more interesting features to find in the photowalking data covered in Chapter 7,
especially when considering structures across different cities. Also, our studies on choosing
campaigns in crowdsourcing environments as well as social tagging systems can potentially
be extended by applying MixedTrails and SubTrails.
Overall. Our proposed methods enable a wide range of novel studies on human navigation
behavior in the light of its inherently heterogeneous nature. With this, we provide a solid
building block for further, more advanced analysis methods. Especially, our methodological
contributions — MixedTrails and SubTrails — that support both, hypothesis comparison
as well as conception, open up new ways of studying navigational data. We firmly believe
that this will trigger various novel insights in many application scenarios. Accordingly,
our case studies illustrated the variety of domains and facets in which navigational
processes can be studied and, thus, showcased the applicability and flexibility of our
approaches. In the process, we presented new aspects of human navigation which we hope
will inspire a multitude of future studies in order to ultimately help to better understand
the multi-faceted, and inherently heterogeneous, nature of human navigation behavior.
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A. General notation table

S set of all states S = {s1, . . . , sn}
D set of observed transitions D = {t1, ..., tm}
srck, dstk source state srck and the destination state dstk of transtion tk
ik, jk index of the source state ik and the destination state jk of transtion tk
ti,j a transition from state si to state sj
ni,j the count of transitions from state si to state sj in a specific dataset D
T the transition count matrix T = (ni,j) holds the transition counts ni,j

between all states si, sj in S with regard to a dataset D
θi,j probability of a transition from state si to state sj
θsi transition probabilities from state si to all other states,

i.e., θsi = (θi,1, . . . , θi,n)
θ transition probabilities between all states,

i.e., θ = (θi,j) = {θsi | si ∈ S}
θD the transition probability matrix derived from the

transition count matrix TD
φi,j belief (as defined by a hypothesis) in the

probability of a transition from state si to state sj
φsi belief in transition probabilities from state si to all states,

i.e., φsi = (φi,1, . . . , φi,n)
φ belief in transition probabilities between all states,

i.e., φ = (φi,j) = {φsi | si ∈ S}
αi,j Dirichlet parameter (∈ R+) for the transition from state si to state sj
αsi Dirichlet parameters for state si, i.e., αsi = (αi,1, . . . , αi,n)
α Dirichlet parameters for all transitions, i.e., α = {αsi | si ∈ S}

Table A.1.: General notations. Overview of the most important notations with regard to
Markov chains (cf. Section 3.2) and HypTrails (cf. Section 3.3.2)
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B. MixedTrails notation table

G set of all groups G = {g1, . . . , go}
γg|t probability for transition t to belong to group g
γt group assignment probabilities for a single transitions γt = {γg|t|g ∈ G}
γ group assignment probabilities for all transitions γ = {γt|t ∈ D}
θi,j|g probability of a transition from state si to state sj in group g
θsi|g transition probabilities from state si to all other states in group g,

i.e., θsi|g = (θi,1|g, . . . , θi,n|g)

θg transition probabilities between states in group g,
i.e., θg = {θsi|g | si ∈ S}

θ transition probabilities between all states for all groups θ = {θg | g ∈ G}
φi,j|g belief (as defined by a hypothesis) in the probability of a transition from

state si to state sj in group g
φsi|g belief in transition probabilities from state si to all states in group g,

i.e., φsi|g = (φi,1|g, . . . , φi,n|g)

φg belief in transition probabilities between states in group g,
i.e., φg = {φsi|g | si ∈ S}

φ belief in transition probabilities between all states
αi,j|g Dirichlet parameter (∈ R+) for the transition from state si to state sj in

group g
αsi|g Dirichlet parameters for state si in group g, i.e., αsi|g = (αi,1|g, . . . , αi,n|g)

αg Dirichlet parameters for the transitions in group g,
i.e., αg = {αsi|g | si ∈ S}

α Dirichlet parameters for all groups α = {αg|g ∈ G}
Ω the set of all group assignments,

i.e., Ω = {{(t1, g1), ..., (tm, gm)}|(g1, ..., gm) ∈ G|D|}
ω a fixed group assignment ω ∈ Ω, which assigns a fixed group for each

transition in a transition dataset D
pω the probability for group assignment ω ∈ Ω

ni,j|g,ω the number of transitions in dataset D from state si to state sj given
group g ∈ G and group assignment ω ∈ Ω

Tg,ω the matrix Tg,ω = (ni,j|g,ω) holds the number of transitions in dataset D
between all states given group g ∈ G and group assignment ω ∈ Ω

Table B.1.: MixedTrails notations. This is an overview of the most important notations used
in the context of the MixedTrails approach (Chapter 4). Also see Table A.1, for more general
notations in the context of Markov chains and HypTrails.
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C. Derivation of the marginal likelihood
of MTMC for MixedTrails

This chapter elaborates on the derivation of the marginal likelihood of the MTMC model
used by the MixedTrails approach introduced in Chapter 4.
Given the generative process from Section 4.2.2 and by exploiting the fact that the

transition probabilities θg for each group g as well as the group assignment probabilities
γg|tk for each transition tk are independent, we can write the marginal likelihood of
MTMC as follows:

Pr(D|H) =

∫
Pr(D|θ,γ)︸ ︷︷ ︸
likelihood

Pr(θ|α)︸ ︷︷ ︸
prior

dθ (C.1)

=

∫ ∏
tk∈D

∑
g∈G

γg|tkθik,jk|g︸ ︷︷ ︸
Pr(D|θ,γ)

∏
g∈G

Pr(θg|αg)︸ ︷︷ ︸
Pr(θ|α)

∏
g∈G

dθg (C.2)

To solve this integral we take a similar path as in the homogeneous case (cf. [453]).
Thus, we need to get the grouping out of the integral. First, we focus on the likelihood
Pr(D|θ,γ) where we extend the multiplication over all transitions resulting in an outer
sum over all possible group assignments:

Pr(D|θ,γ) =
∏
tk∈D

∑
g∈G

γg|tθik,jk|g (C.3)

=
∑
ω∈Ω

Ω={{(t1,g1),...,(tm,gm)}|(g1,...,gm)∈G|D|}

∏
(tk,gk)∈ω

γgk|tkθik,jk|gk (C.4)

=
∑
ω∈Ω

∏
(tk,gk)∈ω

γgk|tk︸ ︷︷ ︸
pω

∏
(tk,gk)∈ω

θik,jk|gk (C.5)

=
∑
ω∈Ω

pω
∏
g∈G

∏
si,sj∈S

θ
ni,j|g,ω
i,j|g (C.6)

Here, each ω represents a single, fixed group assignment of the set of transitions in D,
i.e., each transition has been assigned to a fixed group. The set of all possible group
assignments ω is defined as Ω = {{(t1, g1), ..., (tm, gm)}|(g1, ..., gm) ∈ G|D|}. Furthermore,
pω represents the probability of the respective group assignment ω ∈ Ω. Finally, ni,j|g,ω
denotes the number of transitions from state si to state sj given the group g and the
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group assignment ω. What we observe is that, given a specific group assignment ω, the
likelihood is the same as the likelihood derived by Singer et al. [453].

We now substitute the likelihood Pr(D|θ,γ) in Equation (C.2) with this reformulated
likelihood (Equation (C.6)) and write the priors for the group dependent transition
probabilities Pr(θg|αg) based on the multivariate beta function. Then, we can calculate
the marginal likelihood Pr(D|H) by taking advantage of the independence of the transition
probabilities θg between groups g ∈ G and source states s ∈ S as well as the independence
of group assignment probabilities γgk|tk between transitions tk ∈ D:

Pr(D|H) =

∫ ∑
ω∈Ω

pω
∏
g∈G

∏
si,sj∈S

θ
ni,j|g,ω
i,j|g︸ ︷︷ ︸

Pr(D|θ,γ)

∏
g∈G

∏
si∈S

1

B(αsi|g)

∏
sj∈S

θ
αi,j|g−1

i,j|g︸ ︷︷ ︸
Pr(θg |αg)

∏
g∈G

dθg (C.7)

=
∑
ω∈Ω

pω
∏
g∈G

∏
si∈S

1

B(αsi|g)

∫ ∏
sj∈S

θ
ni,j|g,ω+αi,j|g−1

i,j|g dθg (C.8)

=
∑
ω∈Ω

θω
∏
g∈G

∏
si∈S

B(nsi|g,ω +αsi|g)

B(αsi|g)︸ ︷︷ ︸
Pr(Dg|ω |αg)

(C.9)

This concludes the derivation of the marginal likelihood formula in Equation (4.4).
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D. Total weighted variation as a special
case of Bayesian belief update

As we have hinted on in Section 5.2.2, the weighted total variation ωtv — which we use
in our interestingness measure qtv for discovering subgroups with exceptional transition
behavior — can be interpreted as a special case of Bayesian belief update. We elaborate
on this relation in this section.

Specifically, in Bayesian statistics, one’s current beliefs H are expressed by probability
distributions over some parameters µ. Given new information I, the prior belief P (µ|H)
is updated to a posterior belief P (µ|H, I). In this context, Bayesian belief update is
defined as the difference between the prior belief and the posterior belief. The amount
of belief update was proposed by Silberschatz and Tuzhilin [449] as an interestingness
measure for pattern mining in traditional settings. There, the belief update implied by a
subgroup g is defined by the difference between the prior distribution of µ (derived, e.g.,
from the overall dataset) and the posterior distribution of µ after observing the instances
covered by the subgroup g.

In our setting, the parameters µ represent the transition probabilities of a Markov chain.
In this context, we show that the amount of Bayesian belief update is order equivalent
to the total variation measure ωtv(g,D) from Section 5.2.2 if the transition probabilities
derived from the reference matrix TD are used as a very strong prior. That means that
both measures ultimately imply the same ranking of subgroups.
Recall the total variation measure ωtv(g,D), with Tg = (gi,j) being the transition

counts from a subgroup g and TD = (di,j) being the entries of the reference matrix TD:

ωtv(g,D) =
∑
i

∑
j

gij ·
∑
j

∣∣∣∣∣ gi,j∑
j gi,j

− di,j∑
j di,j

∣∣∣∣∣
 (D.1)

As Singer et al. [453] suggest, we can elicit the matrix of a Dirichlet prior α = (αi,j)
using transition probabilities θD = (θi,j) = (di,j/

∑
j di,j) derived from TD by applying the

formula αi,j = (κ · θi,j) + 1.1 Here, κ specifies the strength of the belief expressed by
the prior. The prior is updated to a posterior according to the transitions observed in
a subgroup g which are given as a transition count matrix Tg = (gi,j). In this context,
according to Singer et al. [454], the expected probabilities for a state transition from state

1Note that in Section 3.3.2, we use φ = (φi,j) to represent the transition probability matrix representing
the hypothesis. Here, we stick to the simplified notation of Chapter 5 which does not differentiate
between hypothesis probability matrices and observed transition probability matrices.
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si to state sj in the prior are

αi,j∑
j αi,j

(D.2)

and the expected probabilities in the posterior are

ci ·
gi,j∑
j gi,j

+ (1− ci) ·
αi,j∑
j αi,j

, with ci =

∑
j gi,j∑

j(gi,j + αi,j)
(D.3)

To determine the overall belief update BU for all state transitions, we compute the
absolute difference between the posterior and the prior for each possible transition (from
state si to state sj) and aggregate these values by summing them up:

BU(H,D) =
∑
i

∑
j

∣∣∣∣∣
(
ci

gi,j∑
j gi,j

+ (1− ci)
αi,j∑
j αi,j

)
− αi,j∑

j αi,j

∣∣∣∣∣ (D.4)

=
∑
i

∑
j

∣∣∣∣∣ci ·
(

gi,j∑
j gi,j

− αi,j∑
j αi,j

)∣∣∣∣∣ (D.5)

=
∑
i

ci ·
∑
j

∣∣∣∣∣
(

gi,j∑
j gi,j

− αi,j∑
j αi,j

)∣∣∣∣∣ (D.6)

=
∑
i

1∑
j(gi,j + αi,j)

∑
j

gi,j
∑
j

(∣∣∣∣∣ gi,j∑
j gi,j

− αi,j∑
j αi,j

∣∣∣∣∣
)

(D.7)

Now, assume that we have a very strong belief in the prior, i.e., κ → ∞ and thus
αi,j � gi,j . Then, the right hand sum converges to the total variation δtv between the
observed transition count matrix Tg and the reference matrix TD. The factor

∑
j gi,j

corresponds to the weights wi. The additional factor 1∑
j(αi,j,+gi,j)

is approximately
constant across all subgroups if αi,j � gi,j since αi,j is independent from the evaluated
subgroup. Overall, the weighted total variation ωtv describes the amount of belief update a
subgroup induces to a prior that reflects a very strong belief in the transition probabilities
given by the reference matrix TD.
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