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Abstract

Understanding human navigation behavior has implications for a wide range of application
scenarios. For example, insights into geo-spatial navigation in urban areas can impact
city planning or public transport. Similarly, knowledge about navigation on the web can
help to improve web site structures or service experience.

In this work, we focus on a hypothesis-driven approach to address the task of under-
standing human navigation: We aim to formulate and compare ideas — for example
stemming from existing theory, literature, intuition, or previous experiments — based on
a given set of navigational observations. For example, we may compare whether tourists
exploring a city walk “short distances” before taking their next photo vs. they tend to
“travel long distances between points of interest”, or whether users browsing Wikipedia
“navigate semantically” vs. “click randomly”.

For this, the Bayesian method HypTrails has recently been proposed. However, while
HypTrails is a straightforward and flexible approach, several major challenges remain:
i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving
user groups such as tourists and locals is not possible), ii) HypTrails does not support
the user in conceiving novel hypotheses when confronted with a large set of possibly
relevant background information or influence factors, e.g., points of interest, popularity of
locations, time of the day, or user properties, and finally iii) formulating hypotheses can
be technically challenging depending on the application scenario (e.g., due to continuous
observations or temporal constraints). In this thesis, we address these limitations by
introducing various novel methods and tools and explore a wide range of case studies.

In particular, our main contributions are the methods MixedTrails and SubTrails
which specifically address the first two limitations: MixedTrails is an approach for
hypothesis comparison that extends the previously proposed HypTrails method to allow
formulating and comparing heterogeneous hypotheses (e.g., incorporating differently
behaving user groups). SubTrails is a method that supports hypothesis conception by
automatically discovering interpretable subgroups with exceptional navigation behavior.
In addition, our methodological contributions also include several tools consisting of a
distributed implementation of HypTrails, a web application for visualizing geo-spatial
human navigation in the context of background information, as well as a system for
collecting, analyzing, and visualizing mobile participatory sensing data.

Furthermore, we conduct case studies in many application domains, which encompass —
among others — geo-spatial navigation based on photos from the photo-sharing platform
Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing
behavior on a commercial crowdsourcing platform. In the process, we develop approaches
to cope with application specific subtleties (like continuous observations and temporal
constraints). The corresponding studies illustrate the variety of domains and facets
in which navigation behavior can be studied and, thus, showcase the expressiveness,
applicability, and flexibility of our methods. Using these methods, we present new aspects
of navigational phenomena which ultimately help to better understand the multi-faceted
characteristics of human navigation behavior.






Zusammenfassung

Menschliches Navigationsverhalten zu verstehen, kann in einer Reihe von Anwendungsge-
bieten grofe Fortschritte bringen. Zum Beispiel konnen Einblicke in rdumliche Navigation,
wie etwa in Innenstédten, dabei helfen Infrastrukturen und offentliche Verkehrsmittel
besser abzustimmen. Genauso kann Wissen iiber das Navigationsverhalten von Benutzern
im Internet Entwickler dabei unterstiitzen, Webseiten besser zu strukturieren oder generell
die Benutzererfahrung zu verbessern.

In dieser Arbeit konzentrieren wir uns auf einen hypothesengetriebenen Ansatz, um
menschliches Navigationsverhalten zu verstehen. Das heifit, wir formulieren und ver-
gleichen Hypothesen basierend auf beobachteten Navigationspfaden. Diese Hypothesen
griinden zumeist auf existierenden Theorien, Literatur, vorherigen Experimenten oder
Intuition. Beispielsweise kann es interessant sein, zu vergleichen, ob Touristen, die eine
Stadt erkunden, eher zu nahegelegenen Sehenswiirdigkeiten laufen als vornehmlich grofie
Strecken zuriickzulegen. Weiterhin kann man in Online-Szenarien vergleichen, ob Benutzer
zum Beispiel auf Wikipedia eher semantisch navigieren als zuféllig Artikel anzusurfen.

Fiir diese Szenarien wurde HypTrails entwickelt, ein Bayes’scher Ansatz zum Vergleich
von Navigationshypothesen. Doch obwohl HypTrails eine einfach zu benutzende und sehr
flexible Methode darstellt, hat es einige deutliche Schwachstellen: Zum einen kann Hyp-
Trails keine heterogenen Prozesse modellieren (z.B., um das Verhalten von verschiedenen
Nutzergruppen, wie etwa von Touristen und Einheimischen, zu unterscheiden). Aufer-
dem bietet HypTrails dem Benutzer keine Unterstiitzung bei der Entwicklung neuer
Hypothesen. Dies stellt vor allem in Kombination mit groffen Mengen an Hintergrund-
informationen und anderen Einflussgrofen (z.B., Sehenswiirdigkeiten, Beliebtheit von
Orten, Tageszeiten, oder verschieden Benutzereigenschaften) eine grofe Herausforderung
dar. Auferdem kann sich das Formulieren von adaquaten Hypothesen abhéngig vom
Anwendungsszenario als schwierig erweisen (z.B. aufgrund von kontinuierlich rdumlichen
Koordinaten oder zeitlichen Nebenbedingungen). In dieser Arbeit setzen wir an eben
jenen Problemstellungen an.

Unsere Hauptbeitrige bestehen dabei aus den Ansétzen MizedTrails und SubTrails, die
vor allem die ersten beiden genannten Schwachstellen adressieren: MixedTrails stellt einen
Ansatz zum Vergleich von Hypothesen dar, der auf HypTrails basiert, es aber ermoglicht
heterogene Hypothesen zu formulieren und zu vergleichen (z.B., bei Benutzergruppen mit
unterschiedlichem Bewegungsverhalten). Wahrend SubTrails eine Methode darstellt, die
das Entwickeln neuer Hypothesen unterstiitzt, indem es die automatische Entdeckung
von interpretierbaren Subgruppen mit aufsergewthnlichen Bewegungscharakteristiken
ermoglicht. Weiterhin stellen wir drei weitere Beitrdge vor: eine verteilte und hochpar-
allele Implementierung von HypTrails, ein Werkzeug zur Visualisierung von raumlicher
Navigation zusammen mit Hintergrundinformationen, sowie ein System zur Sammlung,
Analyse und Visualisierung von Daten aus dem Bereich des Participatory Sensing.

Schliefslich fithren wir mehrere Studien in verschiedenen Anwendungsbereichen durch.
Wir untersuchen etwa rdumliche Navigation basierend auf Photos der Onlineplattform
Flickr, Browsing-Verhalten der Nutzer auf dem Verschlagwortungssystem BibSonomy;,
und das Arbeitsverhalten von Nutzern einer kommerziellen Crowdsourcing-Plattform.
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Dabei entwickeln wir mehrere Ansétze, um mit den Eigenheiten der spezifischen Szenarien
umgehen zu konnen (wie etwa kontinuierliche rdumliche Koordinaten oder zeitliche
Nebenbedingungen). Die Ergebnisse zeigen die Vielzahl von Anwendungsgebieten und
Facetten, in denen Navigationsverhalten analysiert werden kann und illustrieren so die
Ausdrucksstirke, vielseitige Anwendbarkeit und Flexibilitdat unserer Methoden. Gleich-
zeitig, geben wir neue Einblicke in verschiedene Navigationsprozesse und ermoglichen
so einen wichtigen Schritt hin zum Verstdndnis der vielfiltigen Ebenen menschlichen
Navigationsverhaltens.
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1. Introduction

Understanding human navigation behavior has been of interest to researchers and practi-
tioners for well over a century: One of the earliest “modern studies” [377] in the area of
geo-spatial navigation is from 1885 by Ravenstein who investigated migration patterns
in several countries using census data [417]. Then, with the significant urban growth
throughout the 20th century [512], understanding human navigation became more and
more important in order to address the challenges arising in urban planning. For example,
there is work related to human navigation with regard to commuting behavior [184], land
use [95], or travel demand [351].

However, human navigation behavior is not restricted to the geo-spatial domain. Rather,
navigation is defined more generally as “The process or activity of accurately ascertaining
one’s position and planning and following a route.”!. This definition also encompasses
navigation on information environments such as text books or library catalogs where
the user browses or searches for information. Understanding human navigation in this
context has become increasingly relevant with the advent of online systems and the world
wide web where users have to find their way through vast amounts of information on
a daily basis. For example, users navigate Wikipedia [519] to find specific information,
browse videos on YouTube [33], or search for products to buy in online shops [112].

At first glance, geo-spatial navigation and navigation on the web (e.g., as shown in
Figure 1.1) are fundamentally different. That is, the former can be experienced in the
real-world, while the latter is virtual. Nevertheless, the problem settings in each scenario
are very similar: for example managing traffic (e.g., cars [95] vs. webpage traffic [141]),
optimizing infrastructures (improving transport systems [180] vs. introducing new hyper
links [429]), or supporting users in their navigation tasks (routing [135] vs. product
recommendation [419]). Similar analogies can be drawn to other fields, such as navigating
music playlists [68] or app usage on cellphones [542].

To address these (and other) problem settings, it is — independent of the application
domain — essential to understand the underlying processes of human navigation behavior.
For example, knowing that people try to minimize the time to travel between home and
work (rather than, e.g., using a scenic route) can help officials to plan new public trans-
portation systems. Similarly, understanding that users tend to follow certain strategies
when looking for information on Wikipedia introduces possibilities to improve Wikipedia’s
category system or, generally, the link network between articles.

"https://en.oxforddictionaries.com/definition/navigation, accessed: December 2017


https://en.oxforddictionaries.com/definition/navigation

1. Introduction

(a) Photo trails in Manhattan based on Flickr (b) Navigation between articles on Wikipedia

Figure 1.1.: An illustration of human navigation. Human navigation can be observed in
many application domains. This figure depicts geo-spatial navigation (a) and navigation on the
web (b). The former shows photo trails collected from Flickr [44] where red transitions represent
tourists and black transitions represent locals (the trails are restricted to pedestrians selected
via speed and travel distance). The latter shows transition counts on a subset of articles on
Wikipedia collected in the context of the game Wikispeedia [520] (the articles and counts are
restricted to those reachable by a single link from the article “United States”). These examples
illustrate the sheer complexity of human navigation behavior. In this thesis, we present novel
methods to understand such behavior and provide insights into the underlying processes of several
complex application domains.

1.1. Comparing hypotheses about human navigation

Understanding the underlying processes of human navigation behavior is not a trivial task.
For example, navigational characteristics may be different depending on the application
domain, i.e., international travel may be governed by different laws than urban navigation
and browsing on Wikipedia can be very different from user behavior on Facebook. Also
there is a multitude of factors that may influence the underlying processes of the observed
navigation behavior. For example, in the geo-spatial context this may encompass the
infrastructure of a city or the influence of points of interest, and for web pages their
similarity to other pages or their general popularity may play an important role.

Thus, to study these factors and to find concise explanations for human navigation
behavior in various settings, we need adequate methodology to formulate and compare
our ideas about the corresponding underlying processes. To this end, HypTrails [453]| has
been proposed recently. It is a flexible Bayesian approach for formulating and comparing
hypotheses about human navigation behavior in very different application domains. Such
hypotheses usually stem from existing theory, literature, previous experiments or intuition
(cf. explanatory modeling [446]) and can incorporate many different aspects of human
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behavior. For example, HypTrails can be applied to compare hypotheses in online
settings, such as “users navigate semantically” on Wikipedia vs. they “simply browse
randomly” [144], as well as in a geo-spatial context, e.g., for analyzing if tourists prefer
to walk “short distances” before taking their next photo when exploring a city vs. they
tend to “travel long distances between points of interest” before their next shot [44]|. This
empowers a wide variety of case studies on human navigation in very different application
scenarios. However, while HypTrails is a straightforward and flexible approach, it has
limitations with regard to formulating hypotheses, the complexity of the underlying
processes of human navigation, as well as the conception of novel hypotheses. We outline
the corresponding challenges in the next section.

1.2. Challenges of hypothesis comparison

As mentioned in the previous section, HypTrails is a powerful tool for understanding human
navigation behavior. It provides a flexible framework for formulating and comparing
hypotheses about the underlying processes of navigational behavior. However, HypTrails
has limitations which we outline in this section.

1.2.1. Complexity of human behavior

Human navigation behavior is inherently complex. One major aspect illustrating this is
grounded in its heterogeneous characteristics. That is, there are often several sub-processes
responsible for observed navigational phenomena. For example, in the geo-spatial context,
it was shown that individual movement is very different from aggregated views on human
mobility [99]. Other studies break down human mobility into sets of characteristic
components [157, 435|. Also see Figure 1.1a illustrating the difference in behavior of
tourists and locals taking pictures in New York City. Similarly, on the web, navigation
behavior is often categorized into several classes (e.g., searching, general browsing, and
serendipitous browsing [92]) and different user groups have been shown to exhibit specific
behavioral traits (for example younger and older populations [353]). This illustrates how
important it is to understand human navigation as a heterogeneous process instead of
assuming that all users in any situation show the same navigation behavior. To this end,
background information, such as different user properties (e.g., being a tourist or not) or
the context in which the navigation process is performed (e.g., the time of the day), play
an important role. However, HypTrails assumes a homogeneous process underlying the
observed navigation behavior and does not allow to model heterogeneous hypotheses.
Another aspect illustrating the complexity of human navigation behavior is its inherently
large scale nature (e.g., consider the English Wikipedia with more than 254 million page
views per day on over five million articles)?. This requires the methodology applied to
analyze and explain human behavior to be able to handle processes spanning extensive

thtps ://tools.wmflabs.org/siteviews/?platform=all-access&source=pageviews&agent=user&
start=2016-01-01&end=2016-12-31&sites=en.wikipedia.org, accessed: December 2017
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dependency structures as well as massive amounts of observations. However, HypTrails is
not specifically designed to cope with such large-scale environments.

1.2.2. Hypothesis conception

The conception of novel hypotheses about human navigation behavior can be a challenging
task. Especially when considering the vast amount of possible background information
available to the practitioner for explaining its underlying processes. This issue is even
more prominent when prior domain knowledge or specific ideas about possible hypotheses
are limited. For example: Is the distance between places, the attractiveness of points
of interests, the popularity of locations, or a combination of all three of them the best
approach to explain urban navigation? In addition, the inherent heterogeneity of human
behavior (as mentioned in the previous section) introduces further complexity into the
procedure of conceiving hypotheses. For example: Is it important to distinguish between
younger and older people, tourists and locals, or both? Should we consider the time of the
day (e.g., rush hour vs. night times)? These aspects result in an exponentially growing
search space of possible explanations of human navigation behavior. However, by itself,
HypTrails only allows to compare existing hypotheses, e.g., from literature or intuition,
and does not support the process of conceiving novel hypotheses leaving the selection of
relevant background information to the user.

1.2.3. Formulating hypotheses

Finally, even without considering the heterogeneous nature of human navigation (Sec-
tion 1.2.1)and assuming that there is no lack of ideas to formulate hypotheses Section 1.2.2,
the process of formulating hypotheses can still be challenging. That is, there are many
different application domains in which human navigation behavior can be observed (e.g.,
navigating urban areas, or browsing Wikipedia, cf. Figure 1.1). However, while HypTrails
provides a flexible framework, each domain has its own characteristic properties and
may not fit the HypTrails framework directly. For example, in the geo-spatial domain,
navigation is a continuous process, whereas HypTrails requires a discrete state space to
formulate hypotheses. Also, structural factors can play an important role: When studying
web systems, it is important to consider network structures in order to formulate realistic
hypotheses (e.g., there is no link from the article crocodile® to the article teacup* on
Wikipedia). Similarly, some web pages may only be available for a limited amount of time
(such as items in an online store). This illustrates that the process of formulating hy-
potheses in the HypTrails framework can be challenging and requires careful consideration
depending on the application domain in order to yield interpretable results.

3https://en.wikipedia.org/wiki/Crocodile, accessed: December 2017
‘https://en.wikipedia.org/wiki/Teacup, accessed: December 2017


https://en.wikipedia.org/wiki/Crocodile
https://en.wikipedia.org/wiki/Teacup

1.3. Contribution

1.3. Contribution

In this thesis, we extend existing methodology for as well as research on human navigation
behavior and contribute to understanding its underlying processes. In particular, we
address the issues of comparing complex hypotheses as well as hypothesis conception (as
covered in the previous Sections 1.2.1 and 1.2.2, respectively) by introducing novel method-
ology with a focus on the inherent heterogeneity of of human navigation. Furthermore,
we provide insights into human navigation behavior through an extensive set of studies
and — in the process — develop several specialized approaches for formulating hypotheses
(Section 1.2.3) in the context of various application domains. In the following, we give
more details on our contributions which we structure as visualized by Figure 1.2.

1.3.1. Methods

On a methodological level, we categorize our work into two mutually beneficial strategies:
hypothesis comparison and hypothesis conception (see Figure 1.2). Hypothesis comparison
refers to formulating existing ideas as hypotheses (stemming from theory, domain knowl-
edge, previous experiments, or intuition) and comparing them based on observed data.
hypothesis conception, on the other hand, refers to deriving novel ideas and hypotheses
about the underlying processes of human navigation based on a given set of observed
navigational data, e.g., by visualizing, exploring or automatically discovering regularities
and patterns. In the following, we summarize our approaches and contributions along
these two concepts.

1.3.1.1. Comparing complex hypotheses

As mentioned in Section 1.1, we employ the recently proposed HypTrails approach for
comparing hypotheses about human navigation behavior. However, HypTrails has limita-
tions with regard to the complexity inherent to navigational processes (cf. Section 1.2.1).
The next two paragraphs summarize our work to address these limitations consisting of
contributions on a methodological as well as on a tooling level.

In Section 1.2.1, we have emphasized the homogeneous nature of HypTrails which
does not allow to explicitly incorporate heterogeneity into hypotheses, (e.g., in the
form of differently behaving user groups such as tourists and locals as depicted in
Figure 1.1a). Thus, as one of our main contributions, we extend HypTrails to account
for the heterogeneity inherent to human navigation behavior. That is, we propose the
MixedTrails approach (see Chapter 4), which allows to model and compare hypotheses
composed of a set of different navigation processes, instead of assuming the same process
for the complete set of observed data (as HypTrails does). For example, in the context of
our Flickr case study (Chapter 7), we formulate the hypothesis that “tourists exploring a
city are more likely to take their next photo after a short distance while locals are more
selective resulting in longer distances between photos”. Similarly, for search-trails on
Wikipedia (Section 11.2), we test whether it is plausible that “users navigate to central
articles first, before using semantic relatedness to find the article they search for”.
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Figure 1.2.: Our contributions towards understanding human navigation behavior.
The core concept of this thesis are understandable hypotheses (explanations) about human
navigation behavior. To analyze a given dataset with respect to such hypotheses, we can either
formulate a set of candidates (e.g., from theory, literature, previous experiments, or intuition) and
compare them based on how well they explain the observations. Or we can directly analyze the
data in order to conceive plausible explanations, e.g., based on the regularities and patterns we
observe. In both areas we contribute a novel method (MixedTrails and SubTrails, respectively).
We also provide a variety of tools including, for example, an algorithm for efficiently handling
large problem settings as well as several visualization mechanisms. Finally, we analyze human
navigation behavior in various complex applications domains and — in the process — introduce
approaches to handle challenges like continuous navigation data or temporal constraints.
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On the tooling level, we furthermore introduce SparkTrails (Section 6.1), a distributed
implementation of HypTrails based on the MapReduce paradigm. It allows to apply
HypTrails in large-scale application scenarios enabling hypothesis comparison for extensive
dependency structures as well as massive amounts of observations. This method was used
in several of our case studies (Part III).

1.3.1.2. Conception of novel hypotheses

As outlined in Section 1.2.2, methods for supporting the conception of hypotheses about
human navigation behavior are required in cases when prior domain knowledge or specific
ideas are missing (see red elements in Figure 1.2). In this thesis, we contribute several
methods and tools based on descriptive analysis and exceptional model mining in order
to support the process of conceiving novel hypotheses and to better understand the
underlying processes of human navigation.

As one of our main contributions in this thesis, we exploit the descriptive nature of
subgroup discovery by employing the framework of exceptional model mining — an
extension of subgroup discovery — to propose SubTrails, a novel method for mining
subgroups of sequence data (see Chapter 5). By design, SubTrails returns interpretable
subgroups with exceptional transition behavior based on a set of attributes provided by
background information. This allows us to find patterns like “tourists exhibit exceptionally
different navigation behavior compared to the overall population when navigating a city”.
The local nature of this approach, i.e., the fact that we find subsets of the data with
exceptional properties, allows to further explore heterogeneity in human navigation
behavior (cf. Sections 1.2.1 and 1.2.2).

On the tooling level for conceiving novel hypotheses, we present VizTrails (Section 6.2)
and the EveryAware platform (Section 6.3). VizTrails is an interactive visualization tool
for better understanding how navigation behavior in a geo-spatial context materializes.
And the EveryAware system is a holistic platform for collecting, analyzing, and visualizing
mobile environmental measurements specifically featuring the environmental aspects of
noise pollution and air quality measurements. Besides covering the mobile aspects of
human navigation represented by collecting geo-spatial tracks, EveryAware explicitly
incorporates subjective annotations by users allowing to study navigation behavior in a
unique scenario.

1.3.2. Case studies

Human navigation behavior can be observed in a wide variety of settings and exhibits very
specific characteristics in each scenario. In this thesis, we present work in several such
domains broadly applying our methodology and tools mentioned in Section 1.3.1. In the
process, we develop approaches to handle several challenges mentioned in Section 1.2.3
by formulating hypotheses in the context of applications with continuous navigation data
or temporal constraints.

In particular, we explore photo trails using the full range of our methods, i.e., analyzing
overall behavior by comparing hypotheses about urban navigation (e.g., based on proximity
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and popularity of points of interest) using HypTrails, extracting subgroups of the data
using SubTrails, and formulating heterogeneous hypotheses accounting for different user
groups using MixedTrails (in this case, tourists and locals). A special challenge in this case
study is handling continuous navigation data. Furthermore, with our study on explorative
components of geo-spatial navigation in the context of a participatory air quality sensing
campaigns, we cover a previously seldom inspected domain of navigation behavior. Here,
in addition to a continuous navigation process, we have to cope with temporally dense
observations requiring a very restricted type of hypotheses. Additionally, in the context
of online social bookmarking systems, we formulate novel hypotheses about the browsing
behavior of users in folksonomies and study the characteristics of different user groups
on the BibSonomy platform®. And for crowdsourcing environments, we introduce one of
the first studies which compares hypotheses about task-choosing behavior (e.g., based on
monetary incentives or category consistency) on actual log data instead of using surveys.
For this case study, we handle temporal constraints caused by the limited availability of
campaigns. Finally, we cover several small scale case studies which include a preliminary
analysis of navigational processes when exploring urban noise pollution as well as two
examples of applying MixedTrails and SubTrails to navigation on Wikipedia® and the
music platform last.fm?, respectively.

Overall, our case studies illustrate the variety of domains and facets in which navigation
can be studied and, thus, showcase the applicability and flexibility of our approaches. In
the process, we present new aspects of navigation phenomena which ultimately help to
better understand the multi-faceted characteristics of human navigation behavior.

1.4. Structure of this work

This thesis is divided into three parts: background (Part I), methodological contribu-
tions (Part II), and case studies (Part III).

In the background part (Part I), we first cover the current state of understanding human
navigation behavior (Chapter 2) in the context of geo-spatial navigation (Section 2.1)
as well as navigation on the web (Section 2.2). Then, we introduce the methodological
foundations of this thesis (Chapter 3). This includes information on discrete navigational
processes (Section 3.1) and Markov chains (Section 3.2) which define the underlying
concepts of our contributions. In the same section, we continue by reviewing the HypTrails
approach for comparing navigational hypotheses (Section 3.3.2) as well as exceptional
model mining (Section 3.4). Each of these two concepts is used as the foundation of
one of our main methodological contributions (MixedTrails and SubTrails, respectively).
Furthermore, many of our case studies strongly rely on HypTrails.

After covering the required background information, we introduce several novel methods
for analyzing human navigation behavior (Part II). Our main contributions are the two
methods MixedTrails (Chapter 4) and SubTrails (Chapter 5). The hypothesis comparison

"https://www.bibsonomy.org, accessed: December 2017
Shttps://www.wikipedia.org, accessed: December 2017
"https://www.last.fm, accessed: December 2017
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approach, MixedTrails, extends the previously proposed HypTrails method to allow formu-
lating and comparing heterogeneous hypotheses, while the hypothesis conception approach,
SubTrails, represents an algorithm for mining subgroups with exceptional navigation
behavior. Our methodological contribution also includes several tools in Chapter 6 which
consist of a distributed implementation of HypTrails (Section 6.1), a tool for visualizing
geo-spatial human navigation in the context of background information (Section 6.2), as
well as a system for collecting, analyzing, and visualizing mobile participatory sensing
data (Section 6.3).

The final part (Part III) of our thesis consists of a broad variety of studies on real-world
human navigation behavior. This includes work on geo-tagged photos from Flickr in
Chapter 7, on exploration processes in the context of a participatory air quality sensing
campaign (Chapter 8), on browsing behavior on the social tagging system BibSonomy in
Chapter 9, on task choosing behavior on a commercial crowdsourcing platform (Chap-
ter 10), as well as a several small scale studies on navigation in the context of urban noise
pollution exploration, Wikipedia, and music play lists (Chapter 11). Finally, Chapter 12
closes this thesis with a summary as well as remarks on future work.
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2. Current state of understanding human
navigation behavior

Our introduction in Chapter 1 illustrates that understanding human navigation behavior
has implications for a variety of application domains, such as city planning and public
transport in geo-spatial contexts, or improving web site structures and service experience in
online settings. Consequently, many studies have been conducted in both areas supported
by a steadily increasing number of novel data sources, such as GPS tracks or location
based social media check-ins for geo-spatial navigation, and large-scale log datasets from
internet service providers or online platforms in the context of navigation on the web.
In this thesis, we also contribute towards understanding human navigation behavior by
introducing novel methodology to analyze and explore observed data in geo-spatial as
well as online settings, and conduct a wide range of different case studies. Thus, to place
our work, this chapter reviews existing work on human navigation behavior in the context
of geo-spatial navigation (Section 2.1), as well as navigation on the web (Section 2.2).
In particular, for both fields, we first outline early work and give a general overview of
data sources and domains. Then, we introduce a set of existing modeling approaches
in order to illustrate how other studies have explained observed navigational data. We
also list work on regularities and patterns exhibited by human behavior illustrating
the different factors that can influence such observations. Finally, we reiterate over
the reviewed research and highlight studies where the heterogeneous nature of human
behavior is particularly prominent (e.g., in the form of differently behaving user groups
or characteristic navigation patterns on different days of the week). This emphasizes the
value of our main contributions, i.e., enabling and supporting the process of exploring,
discovering, and explaining the heterogenous aspects of navigational data (cf. Chapter 1).

2.1. Geo-spatial behavior

As we have argued in Chapter 1, human navigation behavior can be observed in a variety
of domains. Besides navigation on the web, as we will cover in Section 2.2, this specifically
includes human mobility in the geo-spatial context.! Human mobility studies are highly
relevant with regard to our daily lives, since they have implications for a wide variety of
applications such as understanding human migration patterns [234, 417, 450], improving
urban planning and traffic management [61, 143, 207, 267|, crime prevention [74, 85],

! Due to their ubiquitous nature, geo-spatial mobility, movement, and navigation have been studied in a
wide variety of scenarios. Corresponding studies do not only center on human society but also include
work about animal mobility [53, 158, 428, 452|, and sometimes even its relation to human movement
characteristics [250].
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predicting the spread of diseases [32, 48, 430], or recommending places or travel routes
for locals and tourists [106, 189, 295, 476]. In this section, we place our methodological
approaches (Part II) as well as our case studies (Part IIT) into the corresponding context
of human mobility by giving a brief overview of this broad field of research.

Specifically, we give a short overview of early work on human mobility (Section 2.1.1),
and follow up with a small summary of the development of available geo-spatial data
sources (Section 2.1.2). Then, we cover several aspects of modeling geo-spatial navigation
behavior (Section 2.1.3), and review results on patterns and regularities discovered by
previous work in Section 2.1.4. Afterwards (Section 2.1.5), we cover the notion of
heterogeneity in human mobility data which is especially relevant for this thesis since our
contributions specifically aim at incorporating multiple sub-processes for explaining human
navigation behavior instead of employing a single, possibly oversimplified explanation (cf.
Chapter 1). We close this section with a discussion on the relation of our work to the
previously covered studies (Section 2.1.6).

2.1.1. Early work and development

One of the earliest “modern studies” [377] on human movement has been conducted by
Ravenstein [416, 417] who analyzed census data from several countries. He found certain
laws governing the process of migration. Later studies revisited these laws and put them
into more modern terms such as “Zipf’s law” [484], or the gravity model [88].2 Consecutive
work also studied human migration patterns [304, 458, 473, 554| and, like Ravenstein,
mainly worked with census data or employed information gathered through surveys.
Human mobility studies, however, are not limited to migration. Especially with the
significant urban growth throughout the 20th century [512], human mobility models
became important in order to manage the corresponding challenges in urban planning.
For example, there are studies on land use [e.g., 95|, commuting behavior [e.g., 184], or
travel demand [for an overview see, e.g., 351]. Many of these studies and the corresponding
methods and models such as the gravity model [88], the model of intervening opportuni-
ties [473|, trip and activity based travel demand models [351], or origin-destination flow
estimation [86] still influence research on human mobility today [32, 139, 378, 535].
Nevertheless, all of these studies were limited in that the used data was very sparse
with regard to spatial as well as temporal resolution. Especially information from surveys
— as has been (and still is) often employed for human mobility studies — seldom covers a
large number of individuals. This changed with the advent of cellular phones, the global
positioning system, GPS, and the World Wide Web, as covered in the following section.

2.1.2. Data sources for geo-spatial navigation

While there are many sources to collect data about human mobility, there are three
technologies which have strongly shaped human mobility research in the past two decades,
i.e., mobile phones, the global position system GPS, and their combination in the form
of smartphones giving rise to social networks with location features. In this section, we

2A form of the gravity model was even mentioned as early as 1781, cf. [450].
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briefly cover the data sources associated with these technologies. For another overview on
data sources in the context of human mobility, we refer to Asgari et al. [19].

2.1.2.1. Call detail records (CDR)

With the launch of the second generation of cellular technology in Finland in the early
1990s, human communication has changed tremendously [377]. In a few years the world
coverage of mobile phone subscriptions grew from 12% of the world population to 96% in
2014 resulting in 6.8 billion subscribers [65]. For these users, telecommunication companies
keep call detail records (CDR) from which locations can be inferred every time the user
initiates or receives a call or a text message using the location of the tower routing the
communication [214]. Blondel et al. [65] give an overview of the studies emerging from this
kind of data in general. With regard to mobility, even though there are studies warning
about bias [329, 415, 518|, and even though CDR data does not provide a high spatial
(e.g., 2km? to 3km?, [420]) or temporal resolution (hand picked intervals or dependent
on the frequency of text messages and calls), studying human mobility using large sets of
CDR data is an active area of research [e.g., 46, 214, 245|.

2.1.2.2. Global positioning system (GPS)

Another source of location data often used to study human mobility are GPS tracks [e.g.,
91, 276, 562|. The global positioning system (GPS) was developed in the 1970’s by the U.S.
Military, reaching full operational capacity in 1995 [409]. Since then it was used in a wide
variety of applications including mobility and movement behavior research where it was
employed to enhance individual travel surveys [445, 531]. After the year 2000, when the
artificial accuracy limitation (selective availability) for civilian use was deactivated [531],
many industries adopted GPS. This resulted in a boom of navigation devices and the
integration into smartphones, the latter starting in 1999 and being continuously improved,
e.g., by introducing assisted GPS in 2004 by Qualcomm.? Compared to call detail records
(CDR), which are sparse in time and coarse in space [46], GPS tracks are more fine grained
and temporally dense. However, studies using GPS tracks are often criticized because
they tend to contain small amounts of participants [415, 445, at least in the context of
travel surveys. In other domains, large scale datasets are available, for example, including
GPS tracks of fitness trackers or taxis [91, 400|. Even though this data, in comparison to
surveys, usually lacks background information (e.g., about the users or the purpose of the
trip), it can still be employed to derive interesting insights into human mobility [e.g., 185].

2.1.2.3. Social networks and locations

The introduction of the World Wide Web (WWW) in the early 1900s [59] has contributed
greatly to studying human mobility [124]. For example, distributing surveys to larger
amounts of participants became easier, as taken advantage of by Brockmann et al. [75],
who tracked dollar bills using a web interface to reach a broad audience.* However, the

3http://www.pcworld. com/article/2000276/a-brief-history-of-gps.html, accessed: 11.02.2017
*http://www.wheresgeorge.com/, accessed: December 2017
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most interesting change came with the increasing popularity of social networks [163] and
the general adoption of smartphones at the beginning of the 21st century [377].> The
continuously improving localization capabilities of smartphones using a combination of
network, Wifi, and GPS positioning in combination with their access to the WWW gave
rise to location based social networks and triggered the integration of location features
into existing social networks. This led to novel research on human mobility based on
dedicated location-based platforms like Gowalla®, Brightkite®, Foursquare” [116, 433]
but also on existing social networks such as Facebook® [509], or Twitter® [107, 235]
which started to incorporate location features into their systems. Even though these
services are usually based on active check-ins, thus, sharing some draw-backs with call
detail records [556] and even exhibiting an inferior temporal resolution, they provide a
unique link between location sequences and semantic data such as information about the
location, corresponding activities, and friendship relations [116, 233|. Other specialized
systems provide very specific localized information, such as yelp!'’, which implements a
review system for places [cf., 82|, and Flickr'!, a social photo-sharing platform supporting
geo-tagged photos [cf., 37, 205, 206].

2.1.2.4. Other data sources and discussion

In Section 2.1.1 as well as this section, we have covered the “traditional” [233, 445| survey
based data collection method as well as three currently often used data sources used
in human mobility research, i.e., call detail records from mobile phones, GPS tracks,
and social networks with location features. While there are other data sources worth
mentioning, such as specifically exploiting the Wifi [368, 418, 427, 548| or Bluetooth [155,
469| capabilities of smartphones (e.g., for indoor localization), RFID technology |e.g.,
94|, smart cards in transport systems [334, 392|, or usage data of bike sharing stations
[180, 267], the formerly mentioned three sources have gained particular interest by the
research community. Nevertheless, each data source has its own characteristics and may
represent reality in a biased way [99]. Also note, that the different data sources can
capture mobility at different scales including inter-continent scale [32, 356], inter-country
scale 32, 235, 516], regional scale [193, 450], intra-city scale [378, 535|, and even campus
scale or within buildings |27, 94, 249]. Each can be used for different aspects of mobility,
with the potential to still yield universal patterns. For more information, we also refer to
surveys as by Asgari et al. [19], Chen et al. [99], and Zhao et al. [558].

5The IBM Simon produced in 1995 is being considered the first smartphone:
https://www.bloomberg.com/news/articles/2012-06-29/before- iphone-and-android- came- simon-the-first-smartphone,
accessed: 2017-02-13

Sdiscontinued

"https://foursquare.com/, accessed: December 2017

8https://facebook.com, accessed: December 2017

“https://twitter.com, accessed: December 2017

https://yelp.com, accessed: December 2017

Mhttps://flickr.com, accessed: December 2017
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2.1. Geo-spatial behavior

2.1.3. Modeling

There are several studies categorizing and summarizing geo-spatial navigation behavior
research and human mobility from different view points [e.g., 19, 99, 558|. In this section,
we list some prominent results spanning the previously introduced data sources, different
scales, and various approaches. Note that there are generally two fields of research,
both analyzing and modeling human movement behavior with different background and
methodology. They are called “travel behavior analysis” and “human mobility analysis’
by Chen et al. [99]. The former consists of a longer history of transportation researchers
modeling human mobility with advanced and intricate models but mostly based on small
datasets and surveys. The latter is a collection of mostly computer scientists and physicists
focusing on recently available larger datasets as covered in Section 2.1.2. For a comparison
of both fields we refer to Chen et al. [99].

In this section, we focus on “human mobility analysis”, i.e., we mostly cover results
on large datasets from the various sources introduced in Section 2.1.2.!? In particular,
we first cover the prominent field of models concerning distance and opportunities for
explaining and predicting human mobility characteristics. Afterwards, we review the
notion of trip displacement distributions which is an often used concept for studying
different properties of the observed data when modeling human movement processes.

)

2.1.3.1. Distance and opportunities

Human mobility is strongly intertwined with distance. In particular, the notion of some
form of distance decay plays an important role in many human mobility models. In this
section, we focus on models for human movement on an aggregate level. Specifically,
these models predict the number of people transitioning between discrete locations: There
are two prominent models, taking different vantage points on this concept, namely the
gravity approach and the idea of intervening opportunities. In the following, we first
introduce each model, also including the radiation model, a widely adopted variant of
the intervening opportunities approach. Then, we focus on recent work comparing and
extending both models. We finish with a short summary concluding that while both
methods seem to be viable models of human mobility and some universal traits can be
found, a universal model for human mobility has not yet been established. We also refer
to Lenormand et al. [313] who give a similar overview.

The gravity model. According to Simini et al. [450] the contemporary formulation of
the gravity model goes back to Zipf [570] with roots in the 18th century. It models the
number of transitions between two locations proportionally to their combined population
decaying with respect to some function of their distance [cf., 313]. Two frequently used
decay functions, often compared against each other, are the power-law and the exponential
function [105, 322|. The gravity model has seen many applications, studies and extensions
in a variety contexts within the field of human mobility: For example, the original work by
Zipf studied the number of persons that move between cities based on public bus travel,

12Note that, in the following sections as well as the rest of this thesis, we loosely use the terms “mobility”,
“navigation”, and “movement” synonymously.
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railway travel, and airway travel (with data from the office of the Federal Coordinator of
Transportation) and found considerable correlation (especially for bus travel) between
the observed data and the results from the gravity model. For work on the gravity model
applied to transportation analysis in general, Erlander and Stewart [165] give an overview
up until 1990. In more recent work, the gravity model was applied to fit the traffic flow on
highways between cities in Korea [263], to explain the spreading of infectious diseases [32],
and to explain patterns in check-in data from a Chinese location based social network Liu
et al. [328], where that latter found a power-law distance decay effect and suspect different
decays for inter- and intra-province mobility. Other studies include, but are not limited
to: Gargiulo et al. [192|, Griffith [218], Lenormand et al. [314], Liang et al. [322], Masucci
et al. [344], and Pappalardo et al. [389].

Intervening opportunities. The intervening opportunities model was introduced by
Stouffer [473]. It only indirectly models a distance decay by incorporating distance as a
notion of “opportunities” between two different locations. In particular Stouffer states
that “the number of persons going a given distance is directly proportional to the number
of opportunities at that distance and inversely proportional to the number of intervening
opportunities”. Stouffer also notes that the concept of distance (between two locations)
as well as the notion of opportunities can and must be defined in different ways in order
to explain mobility in different contexts: distance can be related to units in space, cost,
or time and opportunities can be defined with regard to the social situation of the study,
e.g., job opportunities when studying migration or recreational areas when studying
intra-urban mobility. After its introduction, the intervening opportunities model has been
studied intently (see, e.g., Akwawua and Pooler [11], Haynes et al. [237], Ruiter [425],
and Wills [530] listed by Lenormand et al. [313]|) and was found to perform comparably
to the gravity model. Even so, the gravity model has been applied more readily. Only
recently [313] new models were proposed inherently building on the concept of intervening
opportunities [269]. Such models include, for example, the radiation model [450], the
rank-based gravity model [378], or the population weighted opportunity model [545]. Of
these models the radiation model has found considerable attention in human mobility
research, cf. [269, 313, 344, 388, 544|.

The radiation model. The radiation model was proposed by Simini et al. [450],
who argued that the gravity model, i.e., its parameterized version'3, needs parameter
adjustments varying by region and suffers from analytic inconsistencies. To solve these
issues they introduced the radiation model: Analogously to the gravity model the number
of predicted transitions from one location to another grows as the population at both
locations increases. However, it also incorporates the idea of intervening opportunities and
models an absorption potential by weighing against the size of the population between
both locations. They evaluated the raditaion model on hourly travel counts, migration,
communication patterns, and commodity flows derived from census data, call detail
records and tax documents (mostly on a state, county, or municipality scale), and found
their model to fit the data better than the gravity model.

13For a comparison of the parameterized vs. non-parameterized gravity model we refer to, e.g., Masucci
et al. [344].
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Extensions. Since the introduction of the radiation model, several comparative stud-
ies, and extensions to both, the gravity and the radiation model, have emerged with
contradicting results [314]. For example, in contrast to Simini et al. [450], Masucci
et al. [344| compared the gravity and the radiation model and found that, generally, the
(parameterized) gravity model performed better in modeling commuting flows (based
on census data) on a national level, i.e., between cities and city clusters in England
and Wales. Nevertheless, they also noted that the radiation model has advantages in
situation were calibration data is missing and found that “for large distances and small
and moderate destination population scales, the principles of the radiation model are
reliable and that mobility patterns can be approached by a diffusion model [such as the
radiation model] where intervening opportunities on the commuting paths prevail on the
distance of such paths”. Finally, they observed that on an urban level (between wards in
and around the Greater London Authority area) neither model performed well. Again,
slightly contradicting results were found by Palchykov et al. [388] who studied the gravity
and radiation model using the number of phone calls as a proxy for movement. While
they confirmed that the radiation model works better for long distances, they concluded
that, on average, both models represent the processes of inter- as well as intra-city (cell
tower) movement to some degree. Nevertheless, they argued that their data does not
necessarily reflect reality due their use of call counts as a proxy for mobility. Finally,
one of the latest comparisons of gravity and radiation models by Lenormand et al. [313]
performed a systematic comparison by employing several commuting datasets. Lenormand
et al. emphasized the importance of similar testing situations with regard to i) the input
(population counts, jobs opportunities, etc.) and ii) the applied constraints with regard
to preserving the observed number of incoming and outgoing transitions at each location
(cf. Wills [530] for a discussion on constraints). They found the gravity model with an
exponential decay to perform best, but — like the other studies — noted that it fails to
estimate commuting flows at large distances.

Universal laws. Overall, the discussion around these models is shaped by the aim to
find a universal law [e.g., 294, 378, 450], i.e., a model which i) explains human mobility at
different scales (e.g., between cities and within cities) and in different contexts (such as taxi
logs, call detail records or migration), and ii) with the least amount of parameters. While
several studies claim that their models (extensions or variants of the previously introduced
gravity, intervening opportunities, or radiation model) are universally applicable [e.g.,
378, 450], a tendency was found that the gravity model performs better at short distance
movement and that the radiation model is more accurate at modeling long distance
mobility [e.g., 344]. Thus, in order to derive a universal law, several researchers have
attempted to generalize either model. For example, Kang et al. [269] claim the formulation
of a generalized version of the radiation model. They reported that it overcomes the
previously found limits in modeling short range mobility at the cost of introducing several
parameters (a scaling exponent and a normalization factor) in the context of using search
direction and trip origin-destination (OD) constraints. Also, Simini et al. [451] formulated
a model from which the gravity model, the intervening opportunity model, and the
radiation model can be derived as special cases.
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However, while there are numerous models, they still fail to paint a consistent picture
of human mobility, either because they do not generalize to all scales and environments of
human mobility or because they need a set of parameters to be fitted to the observed data.
This indicates that various factors of human navigation behavior are still not understood.
This thesis aims to further explore such factors incoporating a broad set of background
information in order to better understand the underlying processes.

2.1.3.2. The trip displacement distribution

Studying the trip displacement (also transition length or trip distance) distribution has
become a trademark for recent human mobility studies [188]. In this context, a frequent
question is if trip displacement can be described as a scaling law: Many studies found |cf.,
12, 188| that human travel and mobility show a power-law distribution at a larger scale
(national or inter-urban) such as, for example, Liu et al. [325] and Song et al. [462],
and exhibit an exponential distribution at smaller scales (e.g., at an urban level) as for
example observed by Liang et al. [323] and Liu et al. [325]. Some studies also found other
distributions, such as a superimposition of Poisson [188] or the log-normal distribution [12,
557]. For more information, Alessandretti et al. [12] give an extensive overview of trip
displacement studies covering work from 2006 to 2016 using different data types (call
detail records, taxi and user GPS traces, location based social networks, or surveys) and
different scales (from 10m to 10000 km transitions).

Different models and approaches were applied to explain these characteristics. A variety
of models exist for this purpose [e.g., 535]. However, the most common approaches are
models predicting travel counts on the one hand (similar to the already mentioned gravity
or radiation model [322, 328]); and trajectory based approaches on the other hand, which
explicitly model individual trips. The latter models are based on random walks [188],
including, in particular, Lévy flights [75, 420, 557|. Generally, Lévy flights prefer short
flights with an occasional long jump in between. However, even though they cover an
important aspect of human mobility they are often noted to miss other observed properties
such as spatial and temporal regularities, exploration, or preferential return |cf. 214, 259,
462]. Nevertheless, these models — including for instance the random waypoint model or
the concept of Brownian motion — are also extensively used in the mobile ad hoc network
community [cf., 83, 420] to simulate human mobility in order to evaluate their systems.

2.1.4. Regularities and patterns

The methods and models covered in Section 2.1.3 explain or reproduce certain aspects
and regularities of human mobility to an extent that can be considered a universal law.
For example, independent of the scale (e.g., city or national) and the dataset (e.g., taxi or
call detail records) transition counts exhibit gravity or radiation characteristics [105, 322,
450] and trip length distributions show power-law and exponential behavior [323, 462].
On a more detailed level, however, these laws and models often require fitting to the data
which indicates influence factors beyond mechanical processes [e.g., 270]. Furthermore,
besides these aggregate regularities it has also been widely recognized that the proposed
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approaches do not cover more intricate characteristics, i.e., they do not account for the
fact that a specific individual does usually not behave randomly [462|. Thus, a variety
of constraints, regularities, and patterns have been studied in the process of trying to
explain different aspects of human mobility. For example, to explain trip displacement
as covered in Section 2.1.3.2, a variety of aspects has been studied such as the average
population density in urban areas [322], place density [102|, the underlying street network
[259], travel times [188], or the activities of individuals [535].

In the following, we cover several patterns and regularities of human mobility which
are important to understand human navigation behavior as a whole. In particular, we
cover several spatial and temporal aspects (Section 2.1.4.1), the influence of activities
and context (Section 2.1.4.2), as well as social factors (Section 2.1.4.3).

2.1.4.1. Spatial and temporal aspects

It has been found that individual human mobility has a high degree of spatial and
temporal regularity [e.g., 107, 136, 157, 213, 214, 384, 389, 462, 488|. For example, based
on call detail records, Song et al. [462, 463] showed i) that the daily mobility patterns
of users are restricted to a relatively small area with relatively few explorations, i.e.,
they have a 1 to 10 miles radius of gyration, ii) that users exhibit preferential return',
i.e., they visit a small set of locations frequently!'®, and iii) that human mobility has
predictability rate potentially as high as 93%. Furthermore, Cheng et al. [107]| confirmed
similar findings across several countries and cities using check-in data from location
based social networks. They also found strong regularities in daily and weekly check-in
frequencies and discover differences between work days and weekends. Along the same
line, Kaltenbrunner et al. [267] studied the spatio-temporal activity cycles of a city
using bike-sharing data. And finally, Oliveira et al. [384] found significant similarities
in people’s mobility habits regardless of the city and nature of the dataset (using data
from OpenStreetMap'®, GeoLife [565], and call detail records). They also list three traits
present in an individual’s urban mobility: preference for shortest-paths, confinement, and
repetitiveness, which match the patterns mentioned above very well.

2.1.4.2. Activities and context

Another important aspect of human mobility is its contextual component, i.e., under-
standing the incentives and purposes of human movement is essential to explain individual
trajectories and improve the modeling of emerging mobility patterns. Indeed, in aggregate
mobility studies and in particular in traffic and travel demand modeling there has been a
shift from trip-based models, such as the four step model [351], to activity-based mod-
els [16, 61, 421|, which recognize that travel demand stems from daily activity patterns.
Discrete choice models are an even more fine-grained variant, which microscopically model
user choices based on alternatives, trade-offs, and conditions [cf., 99].

MPpreferential return was, for example, also used by Pappalardo et al. [389] in combination with a gravity
model to simulate individual traces.

5Tn fact 70% of the time a user can be found at her most visited location. [462, 463]

Yhttps://wiki.openstreetmap.org/wiki/API
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In the following, we cover several studies which explicitly take into account activities as
well as contextual information in order to model geo-spatial human navigation behavior. In
particular, we review work which aims at decomposing geo-spatial behavior into different
activities, we cover studies analyzing human mobility on the activity-level instead of
directly considering trajectories, and we list research on coping with sparsity of contextual
information for raw trajectory data needed to derive activity information.

Composition of activities. In contrast to the field of travel demand and traffic
modeling, which tries to build fine-grained models, the data mining community focuses
more on finding general patterns in large datasets. In this context, recent work has found
that human mobility can be separated into basic daily activity patterns. For example,
Eagle and Pentland [157] observed specific “eigenbehaviors” between locations like home
or work which allowed for predicting the remaining activity of the day given its first half.
And, based on taxi trips from Shanghai, Peng et al. [393] discovered that people travel
on workdays mainly for three basic purposes: commuting between home and workplace,
traveling from workplace to workplace, and a subsuming purpose including, e.g., leisure
activities. Accordingly, Wang et al. [510] found that mobility is easier to predict on
workdays than on weekends by using taxi, bus, and check-in data. Finally, Schneider et al.
[435] studied daily motifs represented by activity networks. Using surveys and mobile
phone data for different countries, they discovered 17 unique networks (between locations)
in daily mobility which captured the behavior up to 90% of the population. Similar work
is based on motifs using data from Boston, Vienna, and Singapore [260, 261, 526].

Activity-level analysis. The previously mentioned results indicate that the shift towards
activity based models as well as the contextual information of trips can account for strong
regularities in human mobility. Consequently, other work has focused on the more abstract
concept of activities instead of concentrating on raw trajectory data. For example, Wu
et al. [535] analyzed location check-in data and found that transition probabilities between
activities change over time. They also simulated travel demand based transitions between
two different activity types, i.e., fixed location (e.g., home, work) and multi-location (e.g.,
dinner, recreation) “activities”. Furthermore, Thomas et al. [483] studied the connection
between activities and distance decay based on survey data. Also, Preotiuc-Pietro and
Cohn [406] investigated Foursquare check-ins in order to explore activity class distributions
over time and their respective transitions. They clustered users based on their activity
profile and identified classes like “businessmen” or “students”. Finally, Ying et al. [547]
improved on predicting the next movement of mobile users by exploiting “semantic”
trajectories (meaningful trajectories such as bank — park — home).

Discovering activities and context. However, an issue with studying activities to
explain human mobility is, that, with big data, there is the dilemma that trajectory data
is readily available but activity data as well as background data is sparse [213]. Thus,
several approaches have been proposed to infer context such as activity locations and trip
purposes from movement trajectories. Some use clustering approaches to find activity
locations [82, 546], while others try to also explain the purpose of a location, for example,
by using information from points of interest [213, 251, 539], or geo-tagged messages from
Twitter [185, 559]. Also see Chen et al. [99] for further work in this area.
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2.1.4.3. Social factors

A strong factor in human mobility was found to be social relations and social interaction.
In the following, we cover general relations between social ties and human mobility, review
work on predicting social ties from spatio-temporal behavior, and list a selection of models
for human navigation behavior which incorporate social factors.

Influence of social ties on human mobility. On the most general level, studies show
that the frequency of contact of individuals (analog and digital) is inversely proportional
to spatial distance [210, 394]. With regard to social factors, Phithakkitnukoon et al.
[396] discovered strong connections between proximity and social ties based on call detail
records. Along this line, Lu et al. [331] found that people tend to travel to places where
they have social bonds and Berg et al. [58] reported that — according to statistics
from Netherland — more than 15% of trips are due to social activities. Furthermore,
Scellato et al. [433] discovered similar socio-spatial properties across several location-based
social networks (LBSN), i.e., Brightkite, Gowalla und Foursquare, signaling significant
correlations between the users’ social properties and their spatial behavior; whereas
Phithakkitnukoon and Smoreda [395] deduced that people tend to have a more similar
behavior with closer social ties. Finally, Backstrom et al. [29] observed and measured the
relationship between geography and friendship based on addresses reported on Facebook
and were even able to predict user locations based on the spatial behavior of their social
ties.

Predicting social ties. As covered above, social ties stronlgy influence human movement
behavior yielding characterstic navigational patterns. Thus, it is also possible to infer the
underlying social ties by using such patterns. For example, Wang et al. [505] studied call
detail records showing that the similarity between two individuals’ movements strongly
correlates with their proximity in the corresponding call network allowing to predict new
links within this network. Eagle et al. [156] also used mobile phone records and argued
that proximity is generally much higher for friends and find that up to 95% of friendship
dyads can be accurately inferred using observational data on human behavior. There
are many other works in this direction including, for example, Cranshaw et al. [129]
who improved, e.g., on Eagle et al. [156], predicting friendship between two users by
analyzing their location trails. Similarly, Crandall et al. [127] proposed a co-occurrence
based method on data from the social photo-sharing platform Flickr and Xiao et al. [53§]
used GPS tracks to calculate a similarity measure based on semantic trajectories [cf. 547|
which they employed to derive social ties.

Human mobility models incorporating social ties. With regard to modeling human
mobility incorporating social factors, there is, for example, a variety of models in the
MANET (mobile ad hoc networks) community incorporating social properties |73, 242,
371]. In particular, Boldrini and Passarella [66] incorporated social attraction, location
attraction, and preference for short distances, which is reported to accurately model ICT
(inter contact time) and jump sizes. Also, while Cho et al. [116] found that short-ranged
travel is periodic both spatially and temporally and not effected by the social network
structure, they also reported that long-distance travel was influenced by social network
ties. Using these properties, they showed that social relationships can explain about 10%
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to 30% of all human movement while periodic behavior explains 50% to 70%. Finally,
Toole et al. [487] studied call detail records and i) showed that mobility similarity can be
used to classify social relationships, ii) recovered semantic information about the nature
of a link in the social network, and iii) proposed a human mobility model incorporating
movement-based visitation patterns of social contacts.

2.1.5. Heterogeneity

Even though many researchers work on universal models when considering aggregate
mobility [e.g., 378, 450], it has been widely recognized that human movement is strongly
heterogeneous. This has been shown for individual trajectories but can also be observed
at different levels of aggregate statistics. In this section, we cover several factors of
heterogeneity starting with the difference of mobility patterns for individuals and follow
up with a short overview on demographic and user-based influence factors. Furthermore,
we review work on clusters and components within human navigation behavior.

Individual mobility. For individual mobility, similarly to Yan et al. [543], Chen et al.
[99] warn that properties derived from aggregate mobility analysis cannot be used to derive
regularities for individual movement. Along these lines, Gonzalez et al. [214]| found that
the radius of gyration strongly differs for individual users (based on call detail records).
Similarly, Scellato et al. [433] studied LBSNs (Brightkite, Gowalla und Foursquare) and
observed strong heterogeneity across users with regard to different characteristic spatial
scales of interactions across both their social ties and social triads. And finally, even
across single individuals the temporal variability was found to vary from over 20% to
about 80% as Chen et al. reported in [99].

Demographics and user properties. Besides these general individual differences,
there are also specific demographic factors as well as individual user characteristics which
strongly influence human navigation behavior. For example, Kang et al. [268] studied
different user properties such as age, gender, and, call time profiles. Among other results,
they discovered differences in travel distances for younger and older people based on
mobile phone data. Similarly, Yan et al. [543| found that students and retirees exhibit
different movement behavior on travel survey data, and Kung et al. [294] formulated travel
models differentiating between long and short distance commuters to better represent
the observed data. There are also studies analyzing factors like the influence of gender
[522], a difference in mobility depending on social status [107] or income [143], temporal
aspects [201, 266, 267|, or transportation mode [483].

Clusters and components. On a more general level, it has already been mentioned that
human mobility can be seen and interpreted as a (finite) set of factors, such as clusters [406],
eigenbehaviors [157|, mobility networks [435], or factorized representations [393, 477].
One can define two ways of working with such components, either directly studying the
navigation behavior of predefined subgroups of the observed data (see the paragraph
about demographics and user properties above), or by finding factors or components of
human mobility based on movement properties (e.g., the range of a trip, the time of the
day, certain user properties, etc.) in an automated fashion in order to then interpret the
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corresponding semantics afterwards. An example for the latter is provided by Preotiuc-
Pietro and Cohn [406|, who clustered mobility based on transitions between activity
classes and assigned “human categories”, such as “student” or “workaholics”, to the resulting
behavioral clusters. Similarly, Espin Noboa et al. [166] interpreted sub-processes derived
from taxi traces using tensor factorization. Instead of interpreting the factors based
on intuition alone |as, e.g., 393, 477|, they used HypTrails [453] in order to understand
the semantics underlying the respective mobility factors. In this thesis, we also heavily
exploit the interpretable nature of HypTrails for understanding homogeneous as well as
heterogeneous navigational processes (cf. Chapter 4 and part III).

2.1.6. Discussion and relation to this work

In this section, we covered related work on geo-spatial navigation behavior. This encom-
passed an overview of modeling approaches, a collection of regularities and patterns, as
well as a dedicated section on heterogeneity.

As mentioned in Section 2.1.5, many studies exist that analyze such heterogeneity
to some extent. However, there are no dedicated methods to analyze and explain the
corresponding heterogeneity in general. In contrast, in this thesis, we propose two novel
methods which directly embrace the notion of explainable heterogeneity. In particular, we
introduce the MixedTrails (Chapter 4) and the SubTrails (Chapter 5) approach as well
as several analysis tools (Chapter 6). MixedTrails allows for comparing understandable
hypotheses (from theory or intuition) about heterogeneous navigation processes, whereas
SubTrails enables the automated discovery of interpretable subgroups of sequence data
with exceptional transition behavior, thus, supporting the conception of novel hypotheses.

Besides heterogeneous aspects, Section 2.1.2 also illustrated that there are many different
data sources and application scenarios for which human mobility can be studied. In this
work, we contribute to this field of research by focusing on two specific case studies, i.e.,
we investigate human mobility based on Flickr photos (Chapter 7) and analyze navigation
patterns in a participatory sensing setting (Chapter 8). Studying Flickr photos has the
advantage that the recorded data represents events and carries background information on
the one hand, and, on the other hand, still provides a relatively high spatial and temporal
resolution. Also, human mobility in the context of (mobile) participatory sensing — which
we address in this work — is a seldom covered subject of research. While some work
exists, e.g., deriving air quality from human mobility patterns [e.g., 563|, there are no
studies explicitly trying to understand the underlying processes involved in the observed
navigation behavior.

Overall, we contribute strongly to better understanding human navigation behavior in
the geo-spatial context. In particular, we introduce novel methodology which practitioners
and researchers can use to study human navigation behavior, and we provide novel
insights into human mobility by exploring the corresponding underlying processes in
unprecedented detail and in underrepresented application scenarios.
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2.2. Navigation on the web

The goal of navigation behavior analysis on the web is to understand the navigation
characteristics of users interacting with web resources from one or more web sites. The
resulting insights can then be applied to website construction, adaptation, and manage-
ment, marketing or personalization [cf. 5, 285]. Furthermore, there are many facets of
web navigation to consider ranging from navigation between websites, over intra webpage
navigation (e.g., navigation on Wikipedia), to the interactive processes between specific
concepts of a web-platform (e.g., how users listen to music on online platforms or choose
tasks on crowdsourcing systems).

In this section we first give an overview of early work on web navigation analysis
(Section 2.2.1), and follow up with a brief review of data sources and abstractions of
web navigation studied by previous work (Section 2.2.2). Afterwards, we cover some
prominent modeling approaches (Section 2.2.3), and go over a variety of patterns and
regularities which have been found in human navigation on the web (Section 2.2.4).
Then, we specifically review work on the heterogeneity of navigational processes which
corresponds to one of the main topic of this thesis (Section 2.2.5). Finally, Section 2.2.6
discusses the relation of our work to the previously reviewed studies.

2.2.1. Early work and overview

Some of the earliest work on navigational behavior “on the web” can be traced back
to the 1980’s [125, 485]. For example, Tolle [485] used a Markov model consisting of
abstract states like “ERROR” or “FIND” to represent transaction logs on online public
access catalogs (OPAC). He calculated state and transition probabilities in order to
study “the current utilization of OPACs”, i.e., how users interact with the system. Cove
and Walsh [125] identified different browsing behavior categories on text within a single
document, namely search browsing (goal driven), general purpose browsing (checking
interesting pages), and serendipitous browsing (random). While the previously mentioned
settings hardly correlate to browsing on the web, Carmel et al. [87] found similar browsing
categories on hypertext structures (i.e., analyzing Apple’s HyperCard on Macintosh).
In the same direction, Marchionini [340| studied navigational behavior on a full-text
electronic encyclopedia and found differences in navigation behavior (or “information
seeking”) between younger and older users (from a user base of third, fourth and six
graders). Such work is still very relevant and closely related to current research, e.g., on
the online encyclopedia Wikipedia |e.g., 144, 519].

However, as mentioned by Catledge and Pitkow [92], most of the early work mentioned
so far has not been conducted on the World Wide Web [59], which Catledge and Pitkow
describe as a “collaborative and exceedingly dynamic hypermedia system”. Thus, the
article “Characterizing Browsing Strategies in the World-Wide Web” by Catledge and
Pitkow in 1995 can be considered one of the first navigational behavior studies on the web.
Their goal was to derive “design and usability suggestions for WWW pages, sites and
browsers”. Based on descriptive analysis of log files from the XMosaic browser with over
43000 events, they found user navigation patters on the web equivalent to the previously
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mentioned studies on closed (hypertext) systems [87, 125|: searching, general browsing,
and serendipitous browsing.

In the following years, many studies worked further understanding navigational behavior
on the web. The corresponding research can be roughly divided by the different approaches
being taken: Some researchers focused on modeling (closely coupled with prediction) [108,
429, 454| while others investigated regularities, patterns and strategies [4, 519, 523]. Also,
with the increasing number of services provided by the web, navigational studies greatly
expanded from investigating navigational processes between arbitrary websites to more
specialized concepts like navigation on Wikipedia articles [373, 454, 519|, behavior on
social networks [51, 153|, exploration of collections of music (e.g., on last.fm) [172, 312|,
or task choosing characteristics on crowdsourcing platforms [40]. We cover a selection of
these studies in the following sections.

2.2.2. Navigational data on the web

While the traditional form of data for studying human navigation on the web is very
low-level, i.e., consisting for example of server, proxy, or client logs, there exists a variety
of abstractions depending on the application scenario. In this section, we briefly touch on
classic web log data and review some selected forms of abstracted web traffic studied in
the context of human navigation behavior.

Web logs. Studies on human navigation behavior on the web are traditionally concerned
with navigation processes represented by web logs collected for example by servers, proxies
and client programs. This includes work from the web usage mining community [123, 285,
467|, which “focuses on techniques to predict user behavior while the user is interacting
with the web” [285]. For example, Mobasher et al. [361] used access logs from a newsletter
website for generating user profiles, and Liu et al. [326] and Meiss et al. [354] recommended
news and rank web pages based on click log files, respectively. Furthermore, Agosti et
al. [5] give an overview of applied web log analysis from web pages as well as digital
library systems ranging from 1983 to 2011. One of the issues in this context is to derive
abstract notions like users, server sessions, episodes, click-streams, and page views from
the recorded logs [355, 467|. For example, Cooley et al. [122] and Munk et al. [369] list a
set of pre-processing procedures and steps to derive more abstracts concepts from raw
log data. On a more abstract level, some web log datasets also only provide aggregated
information such as target and referrer counts [537].

Domains and abstractions. Often, work on human navigation behavior on the web
focuses on certain domains or abstractions of log data. For example, most studies only
had access to data from a certain set of web servers. Thus, they inherently were limited to
navigation in a specific context, e.g., Liu et al. [326] used web logs from a news platform
and Giindiiz and Ozsu [221] investigated on web logs from the NASA Kennedy Space
Center as well as logs from the Metro Baltimore-Washington DC area.

While such studies usually aim at providing results for general web usage behavior,
there exist many others focusing on certain domains studying and exploiting their specific
characteristics. For example, Lee et al. [305] studied click streams on online stores and
Bollen et al. [67] analyzed web logs from scientific publisher web portals building “maps
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of science”. Furthermore, current work on web navigation analysis focused on selected
applications like navigation on information networks [300, 489] (like Wikipedia [373, 454,
519]), folksonomies [145, 490|, social networks [51, 153|, or ontologies [501, 502, 503|.

In such specialized cases, it often makes sense to employ more abstract notions than
actual page visits. For example in the case of Wikipedia, navigation between actual
articles can be studied (cf., Wikispeedia [520] or Wikigame!? [453, 489]) leaving out
other pages like category overviews or the start page. Similarly, corresponding work on
social bookmarking systems [cf. 145, 373| focuses on those web pages representing the
basic entities of a folksonomy instead of considering search or overview pages. In this
work, we also study the task-choosing behavior of workers on the crowdsourcing platform
Microworkers [40] (cf. Chapter 10) where the users’ interactions with the platform are also
logged on a more abstract level storing task subscriptions directly instead of lower-level
page interactions.

2.2.3. Modeling

The previous sections covered early work on web navigation as well as different domains
and data sources for observing various behavioral aspects. In order to explain the
observed data and to understand the corresponding underlying processes, many studies
apply modeling [e.g., 78, 253, 365], i.e., building systems for explaining the observed
phenomena. In this section, we cover important models for human navigation on the
web focusing on work that is closely related to this thesis, i.e., which is concerned with
trajectories as well as transition behavior. Specifically, we cover work applying Markov
models, which are one of the most widely used approaches for modeling web navigation,
as well as studies that employ the theory of information foraging, which models user
behavior as a search process in an information environment.

2.2.3.1. Markov models and memory processes

Markov models are one of the most prominent model classes employed to represent online
navigation behavior in the context of browsing trajectories and page transitions. In the
following, we review a selected number of studies applying Markov models to research
web navigation, and address the ongoing discussion of the appropriate memory-structure
of navigational processes on the web. For more technical details and methodological
extensions of Markov chains we refer to Section 3.2.

Applications. Descriptive and explorative work often studies transition probabilities
between states of a Markov chain: for example between user actions on online public
access catalogs [485], entities in folksonomies [145], or user behavior categories on social
networks [51]. Further analysis approaches include the application of Markov chains and
its corresponding extensions to clustering users by their behavior |e.g., 81, 406], or to
studying contextual states employing hidden Markov models [84].

Also, a well-known application of Markov models is the PageRank algorithm [387],
which uses a specialized Markov chain model for representing users surfing the web. In

"http://thewikigame.com/
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particular, it models users as random surfers on the link structure imposed by web pages
and ranks these pages according to the number of times each page is visited by these
surfers. Besides the ranking capabilities of this approach (applied to improving search
engines), Page et al. also estimated web traffic using this method. Furthermore, work by
Eirinaki et al. [161] employed the page rank of web sites to impose prior probabilities on
Markov chains for predicting user behavior. Generally, work on predicting distributional
properties, next-clicks, or links is numerous [402, 429, 567, 571|, mostly with the goal to
enhance user experience, e.g., by enabling personalization.

Memory structures. Many of the previously mentioned studies try to go beyond
first-order Markov chains which assume that the next page a user visits only depends
on the current page. In other words, they explore higher order memory structures.
Indeed, considering different memory structures has a long history. For example, Pirolli
and Pitkow [402] found that, in their case, first-order Markov models performed best
for predicting user behavior in the context of predicting link choices. However, there
is an active discussion about the order of Markov chains to use when describing the
memory structures involved in navigational processes on the web [cf. 111, 454]: While the
first-order approach was often applied and confirmed by similar studies [321, 429]|, other
work employed more complex memory structures extending the first-order Markov chain
and reporting superior results. For example, Sen and Hansen [442] modeled navigation
behavior on the web using Markov models of first order, second order, and a mixed
variant, and found that second-order Markov models gave the best performance in their
scenario of predicting session lengths and unique pages per session. Similarly, Borges and
Levene analyzed variable-length Markov chains [71| and emphasized the importance of
higher-order structures |70, 72| by investigating prediction accuracy of next-link choice and
“summarization ability”. Others built approaches combining different orders of Markov
models to gain increased prediction accuracy and less model complexity [141, 571|, or
use tree structures in combination with varying-order models [146]. Finally, Chierichetti
et al. [111] picked up on previous work and found cases where the (first-order) Markovian
property does not hold. Recently, Singer et al. [454] tried to shed light into this ongoing
debate about the depth of memory in web navigation by comparing different orders of
Markov chains based on a variety of statistical evaluation measures. They specifically
considered model complexity to mitigate overfitting effects [cf. 370], and, by doing so,
showed that first-order Markov chains are the most justifiable choice for page-to-page
navigation. At the same time, however, they also discovered that on a more abstract
level, i.e., navigation over topics, first-order chains may not suffice to model navigation
behavior. Note, that there is also work in the human mobility domain (as covered in
Section 2.1) discussing similar issues [cf., 345].

2.2.3.2. Information foraging

Coming from a psychological background rather than a technical one [182], a very specific
set of models has emerged around the theory of “information foraging” [401|, which
considers online navigation as a search process. In particular, this theory assumes that
humans searching for information on the web behave similar to animals searching for
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food. Consequently, the models based on information foraging all incorporate a variant
of information scent, which “is the subjective sense of value and cost of accessing a
page based on perceptual cues” [108]. There are several applications employing the
notion of information scent. For example, Chi et al. [108] described two algorithms: one
for simulating the paths of web users and another for inferring the information need
responsible for an observed path. The theory of information foraging and the concept
of information scent were further studied, extended, or implemented by a variety of
researchers resulting, for example, in the CoLiDeS model by Kitajima et al. [280], the
MESA model by Miller and Remington [358]|, or the SNIF-ACT models by Fu and Pirolli
[182]. Furthermore, the ScentTrails approach [385] highlights hyperlinks to indicate paths
to nicely smelling'® search results. Another concept closely related to information scent is
the notion of “orienteering” [381]. Applied to the world wide web [481] this corresponds to
the process of starting with a set of rather general pages and then “using both prior and
contextual information to close in on the actual information target, often in a series of
steps, without specifying the entire information need up front”. A quite similar description
of user navigation in the context of searching for information is “berry-picking” [38|, which
refers to the process of “bit-at-a-time retrieval”. In other words, user identify useful bits
of information and select references while searching the web step-by-step and constantly
adjusting their queries. Indeed, subsequent work [524] found that following trails to satisfy
one’s information need (instead of directly arriving at the destination of a search) has
value with regard to relevance, topic coverage, topic diversity, novelty, and utility.

2.2.4. Regularities and patterns

Besides modeling the overall processes of user trajectories and transition behavior on the
web (as covered in Section 2.2.3), there are also studies about online navigation analysis
which focus more on discovering regularities and patterns within navigational data. In the
following, we cover several findings from such studies. The variety of results across several
dimensions — including structural and temporal aspects, navigation types and strategies,
as well as semantics — implicates the complexity of human behavior and illustrates the
need for further studies in this subject which we contribute to in this thesis.

2.2.4.1. Structural and temporal aspects

Human navigation behavior exhibits strong structural as well as temporal regularities. In
the following, we address both dimensions.

Structural aspects. On a structural level, Huberman et al. [253] found that the
frequency of website hits follows a “Zipf-like distribution”, i.e., there is a small number
of highly visited pages with a power-law governed drop-off towards pages which are
visited less often. Similar distributional properties were observed to hold for the length
of navigation trails [253, 316]. This observation has been called the “universal law of
web surfing” and was confirmed for mobile web navigation as well [225]. Furthermore,

18 Checking . .. all good!
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depending on the characteristics of the corresponding trails, Catledge and Pitkow [92]
discovered that web pages can be characterized according to their usage patterns.

Temporal aspects. On the temporal level, Agarwal et al. [4] and Matsubara et al.
[348] observed certain temporal click and navigation patterns. Such patterns especially
include cyclic activity over time as also found by Zaiane et al. [550]. Agarwal et al. also
observed differing activity levels of users from the US and international users during
day and night. Furthermore, they found an activity decay in visitation frequencies over
time which they attributed to repeated exposure to the same content. Also, Wu and
Huberman [533] observed similar attention decays attributing them to the novelty of a
story which decreases over time. In the same direction, Zaiane et al. [550] detected a
tendency of users of a collaborative teaching and learning environment to initially explore
the features of the system while becoming more and more focused over time. A similar
convergence effect on the smaller, session time-scale can also be observed when playing
the game Wikispeedia [519] where individuals first navigate to general articles and get
more specific as the search progresses. Also studying temporal aspects of web navigation,
Matsubara et al. [348] analyzed the temporal evolution of different topics such as “media”
or “business”. They found topical preferences by the time of the day and depending on
weekdays. For example, “food”-related URLs are more frequently visited right before
dinner time and “communication”-related topics are more common in the late evening.
Furthermore, on a semantic level, Yang et al. [545] studied so called “progression stages”
along navigation trails on the web. In particular, they proposed an approach to identify
semantic units, such as “US presidents” or “countries”, which users progress through during
a session. Finally, in the context of navigation prediction and personalization, models
often incorporate temporal dependencies [1, 226].

2.2.4.2. Navigation characteristics

Besides the general structural and temporal aspects covered in the previous section, there
are also specific strategies users apply when navigating the web. In the following, we cover
several of such strategies in various application domains including general navigation
characteristics, subprocesses of navigation, backtracking and revisitation patterns, as well
as some other strategies observed for human navigation behavior on the web.

Navigation characteristics. Navigating the web, i.e., “browsing”, is generally made
up of following links and backtracking [517| and has been studied as early as 1998 by
Huberman et al. [253|. They observed that users proceed to another page as long the
“the value of the current page exceeds a threshold”. Furthermore, Weinreich et al. [517]
found that following links is the most common “navigation action” (as opposed to, e.g.,
backtracking) and, thus, that web navigation is a “rapidly interactive process” with regard
to the frequency of clicks. Benevenuto et al. [51] confirmed the prevalence of browsing
on the social network Orkut where it made up more then 90% of the users’ activities.
One possible reason for this is given by White and Huang [524] who found that, in
an information environment such as the web, browsing in general is a practice worth
pursuing since — in contrast to directly accessing a page — following links (and thus
following a search trail) is a strategy often more useful with regard to topic coverage,
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diversity, novelty, and utility. Similarly, Downey et al. [148| concluded that pursuing
links is especially useful when the user has an “information goal” that is rare, i.e., not
commonly searched for.

Sub-processes. Navigating the web it is not a homogeneous process. Instead, it
subsumes a variety of characteristics. For example, some of the earliest work on web-like
structures has found different classes of navigation behavior. That is, Catledge and Pitkow
[92] confirmed and characterized different navigation strategies, namely “serendipitous
browsing”, “general purpose browsing” and “search browsing”, which have been previously
found in different contexts by Carmel et al. [87] and Cove and Walsh [125]. Similarly,
White and Drucker [523| categorized web users into “explorers” and “navigators”, whereas
Choo et al. [117] distinguished between various behavior modes and moves in the context
of information seeking. More recently, Phoa and Sanchez [397] also established three user

groups relevant for their approach: accidental users, regular users, and power users.

Backtracking and revisitation. As previously mentioned, Weinreich et al. [517] argued
that backtracking is less common with more modern browsers. However, Scaria et al.
[432] found that for certain tasks, i.e., in this case for navigating Wikipedia, it plays
an important role. There are also quite a few studies analyzing revisitation patterns
in general |3, 383, 480]. For example Obendorf et al. [383] distinguished between three
revisitation patterns, namely short-, mid-, and long-term revisits, which represent the
notions of backtracking/undoing, reutilizing/observing, and rediscovering, respectively.

Other strategies. There is also a variety of other strategies and characteristics of web
navigation. For example, users tend to follow the already mentioned information scent
(Section 2.2.3.2), they often employ their context knowledge instead of exclusively using
keyword-based search [481], they leverage semantic relations (also see Section 2.2.4.3), or
show a tendency to stray from shortest paths [519]. Thus, overall, individual navigation
strategies can “differ dramatically and are strongly influenced by personal habits and type
of site visited” [383]. We further emphasize this inherent heterogeneity in Section 2.2.5.

2.2.4.3. Semantics

Semantics, i.e., the similarity or relatedness of words and concepts, is an important factor
when analyzing human navigation behavior on the web. Indeed, as argued below, it was
shown that semantics are an integral part of navigation strategies on the one hand, and,
on the other hand, the semantic information inherent to the corresponding navigation
trails can be recovered using appropriate methods.

Semantics are part of navigation strategies. Many of the models and strategies
employed by humans navigating the web are in some form based on semantics. For example,
the strategy users employ to find a certain article by following links on Wikipedia is
governed by semantic similarity [41, 519]. Related notions can be found for navigation on
online folksonomies [373], or task choosing behavior on crowdsourcing platforms [40]. Also,
the concept of information foraging and information scent strongly relies on semantics “to
account for a user’s efficiency in traversing a Web structure” [265]|. Similarly, progression
stages of user session studied by Yang et al. [545] are characterized by semantic homogeneity.
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Brumby and Howes [77] also incorporated semantic similarity in their model for web
navigation and early work by Pierce et al. [398] found that for menu item selection
semantic relatedness of the menu items plays an important role. On a more structured
level, there is even work on incorporating ontologies to model navigation processes [300].
Thus, overall, semantics are present on many layers of the navigational processes we can
observe on the web.

Navigation behavior yields semantics. The inherent semantics of navigational
processes on the web also become clear when considering application oriented work, e.g.,
by Chalmers et al. [98] or Bilenko and White [62]. In particular, Chalmers et al. used
navigation path information for calculating (semantic) similarity between URLs and
Bilenko and White used information about the browsing activity after a search as a
feature “in learning to rank for Web search”, i.e., for improving the results a search engine.
Other studies employed search queries and information about the subsequently chosen web
pages to extract rich semantic relations by building folksonomic structures |31, 57, 286].
Emphasizing the inherent semantic characteristics of human navigation on the web even
more, current work took the approach of calculating semantic relatedness between words
and concepts directly from navigation logs, e.g., in the form of word embeddings [536].
Prominently, Dallmann et al. [132], Niebler et al. [374], and Singer et al. [455] extracted
semantic relatedness from navigation trails on Wikipedia.

2.2.5. Heterogeneity

Studies on human navigation behavior are part of the general research area of web
usage mining [123], which is concerned with “user interactions with Web resources on
one or more Web sites” [324]. There, one of the main applications of analyzing human
navigation is learning user profiles and personalized user models [285]. This already
indicates that the underlying navigation processes are inherently not homogeneous and
differ greatly from user to user. The regularities and patterns discussed in the previous
section, like the three types of browsing (general, serendipitous, and search), already
give some prominent examples of this fact. In the following, we first review already
covered components of human navigation behavior from Section 2.2.3 and Section 2.2.4,
emphasizing the heterogeneous nature of navigational processes on the web. We follow up
with several other studies further illustrating the existence of sub-processes in browsing
and their differences based on the websites and platforms being used, demographics and
user properties, as well as automatically generated clusters.

Browsing types, temporal factors, and topics. First off, we revisit some studies
listed in Section 2.2.4.1, emphasizing the inherent heterogeneous nature of navigation
on web-like structures [87, 92, 117, 125, 397, 523]. Most prominently, we cited Catledge
and Pitkow who found browsing to have three sub-components, namely “serendipitous
browsing”, “general purpose browsing” and “search browsing”. We have also already
discussed temporal aspects of user navigation exhibiting heterogeneous properties including
diverging temporal activity patterns for different countries [4] as well as general topic shifts
over time [348]. On a session-level, Yang et al. [545] studied evolving topic stages resulting
in sequences of semantic units and West and Leskovec [519] and Zaiane et al. [550] found
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a shift from an exploration phase to more focused utilization of the respective information
environment. Finally, beyond singular patterns, models for navigation processes also often
incorporate temporal dependencies [1, 226], e.g., for prediction or personalization.

Platforms and usage aspects. In addition to these general behavioral patterns,
navigation behavior also differs depending on the service being used. Prominent examples
are social networks. In particular, Benevenuto et al. [51] and Schneider et al. [436] both
compared different social networks and found deviating characteristics in activities and
session properties. Taking a different point of view, Dunn et al. [153] investigated the
difference between online social networks (OSN) and search engines. There, the results
showed that users tend to stay on OSNs longer than on search engines and navigate to
less popular and different types of web pages from OSNs.

Demographics and user properties. In addition to the previously covered studies,
there are also other results which emphasize the heterogeneity of human navigation
on the web. In particular, the notion of demographics has been recognized to play an
important role when considering web navigation, especially with regard to optimizing
user experience [97, 353]. For example, one of the most straight-forward influence factors
on human performance when searching and browsing the web is the age or the gender of
individuals [340, 350, 353, 500]. For example Marchionini [340] found that a difference
in search behavior depending on age (on a full-text electronic encyclopedia), and in the
work by Mead et al. [353] older adults were found to be “less efficient and somewhat less
successful than younger adults when searching a 19-page Web site for the answers to
specific questions”. Extending such studies, Goel et al. [208] analyzed an extensive set of
user attributes including education, gender, income, or age, and even found that properties
like ethnicity and income can be inferred from browsing histories. Furthermore, literacy
was discovered to influence navigation behavior by Zarcadoolas et al. [553] who identified
“specific navigational issues” that present barriers to low-literate adults. Similarly, Stanney
and Salvendy [471] studied how individuals who have a low ability to perceive spatial
patterns can be supported when navigating the web. Juvina and Oostendorp [264]
incorporated and extended these studies in their work and found that domain expertise,
spatial ability, working memory, motivation, and interest are important determinants of
task outcomes and thus ultimately influence navigation behavior.

Clusters and components. The previously mentioned studies indicate certain cat-
egories of web navigation characteristics. In web navigation research, or web usage
mining, a common understanding is that establishing user groups can help to infer “user
demographics in order to perform market segmentation in e-commerce applications or
to provide personalized Web content to the users” [467|. To this end, a wide array of
clustering algorithms exists [183, 221, 460, 475, 506] also covering other applications
such as improving page performance or detecting spammers. For example, Wang et al.
[506] analyzed the difference between clickstreams of real users and fake accounts on the
Chinese social network “Renren”. Besides finding different characteristics in the number of
sessions per user, average session length in seconds and clicks, or the average inter-arrival
time, they derived behavioral clusters based on navigation traces which they used to
classify fake accounts. In general, clustering user navigation traces on the web has a long
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history. For instance, as early as 1996, Yan et al. [541] already clusterd user behavior
based on access logs and claimed that the corresponding clusters were “not apparent from
the physical linkage of the pages, and, thus would not be identified without looking at the
[web| logs”. Along the same lines, Cadez et al. [81] and Kumbaroska and Mitrevski [293]
clustered users by navigation paths using a model based approach (instead of a distance
based one). They visualized the clusters, finding different page category preferences.
Another approach (similar to MixedTrails in Chapter 4) specifically employed a mixture
of first-order Markov chains [81]. There are also clustering approaches which allow to
interpret the clusters in order to detect, classify or explain interesting user behavior. For
example, Barab et al. [34] established four classes of navigational performance (“models
users”, “disenchanted volunteers”, “feature explorers”, and “cyber cartographers”), and
Wang et al. [507] found unexpected or interesting sub-clusters such as inactive users or
users with hostile behavior.

2.2.6. Discussion and relation to this work

Analogously to navigation on the web (cf. Section 2.1), we covered several aspects of
web navigation analysis with respect to early work, data, regularities and patterns, as
well as heterogeneity. Especially Section 2.2.4 and Section 2.2.5 emphasized the inherent
heterogeneity of human navigation behavior. This means that there is no single underlying
process explaining the observed data. Rather, there is a multitude of factors which may
influence navigation strategies and characteristics.

While we covered some work which studies these factors, there are no general methods
dedicated to analyzing and understanding such heterogeneity. To this end, this thesis
introduces the MixedTrails (Chapter 4) and the SubTrails (Chapter 5) approach, as well
as several analysis tools (Chapter 6). In particular, MixedTrails allows for comparing
understandable hypotheses (from theory or intuition) about heterogeneous sequence data,
and SubTrails, enables the discovery of interpretable subgroups of sequence data with
exceptional transition behavior.

Additionally, Section 2.2.2 illustrated that web navigation analysis can cover a large
array of data types, abstractions, and application domains. These domains ever expand
and new application domains or systems emerge for which novel kinds of navigation
characteristics have to be investigated. In this context, Agosti et al. [5] mention a set of
future trends for web log analysis, including research on social bookmarking systems (e.g.,
Delicious'” and BibSonomy?°), as well as the increasing focus on online encyclopedias
like Wikipedia?!. Matching these predictions, in this thesis, we contribute a study on the
social bookmarking system BibSonomy (see Chapter 9), and an exemplary case study on
Wikipedia navigation (see Section 11.2). Additionally, we add to the already large array of
different application domains by analyzing task-choosing behavior on the crowdsourcing
platform Microworkers (Chapter 10), as well as music listening trails (see Section 11.3).

Overall, this thesis builds on the previous work covered in the sections above and
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contributes strongly to understanding of human behavior on the web by introducing novel
methods for analyzing heterogeneous navigation processes, and provides corresponding
insights for researchers and practitioners on several interesting application domains.
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In this thesis, our goal is to analyze and understand human navigation behavior, be it in
a geo-spatial context or on the web. To this end, we employ a specific set of underlying
concepts which we introduce in this section.

In particular, we first introduce the notion of discrete navigation processes (Section 3.1)
as the general setting in which we study human navigation behavior. That is, we argue
to use sequences over a discrete state space as the unifying framework (Section 3.1.1),
and emphasize the necessity of background information to cope with the multitude of
underlying aspects and different contexts of navigational processes (Section 3.1.2). Thus,
using background information to explain observed discrete navigation data is the main idea
of this thesis. In the following section, we then review several methodological approaches
applied throughout this work, i.e., Markov chains (Section 3.2), the HypTrails approach
(Section 3.3.2), as well as exceptional model mining (Section 3.4.1). Specifically, we start
with defining Markov chains which represent the core concept employed by this thesis.
Then, we cover HypTrails, a Bayesian approach for comparing hypotheses about human
navigation trails, which we extend to cope for heterogeneous hypotheses (cf. Chapter 4)
and apply extensively in our case studies (cf. Part III). Finally, Exceptional model mining
is the basis for our second methodological contribution called SubTrails (Chapter 5), a
method for discovering subgroups with exceptional transition behavior. For a general
overview on notations in the context of discrete navigational data and Markov chains, we
refer to Table A.1.

3.1. Data for understanding discrete navigation

In this thesis, we aim to understand human navigation behavior in various application
domains, i.e., geo-spatial navigation, and navigation on the web (cf. Chapter 1). To study
these domains in a unified manner, we apply the concept of discrete navigation behavior,
and employ background information to explain the observed data. In this section, we
first introduce the notion of discrete navigation data (Section 3.1.1), and then give an
overview of relevant background information (Section 3.1.2).

3.1.1. Discrete navigational data

At first glance, geo-spatial navigation and navigation on the web — which we study in
this thesis — appear to be fundamentally different instantiations of human navigation
behavior. That is, generally, geo-spatial navigation is part of our physical experience
while navigation on the web is a virtual process. Also, on a technical level, the former
is embedded into the continuous space of the real world while navigation on the web is
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Figure 3.1.: Example for discrete navigational data. This figure shows a path dataset D
based on state space S of locations in New York City (Central Park, Times Square, Statue of
Liberty, Empire State Building). The dataset contains two paths, one by Alice (palice) and one
by Bob (prob). Alice starts at Central Station Scentral and Bob at the Statue of Liberty sstatue-

restricted to a discrete set of web pages (cf. Figure 1.1 in Chapter 1). However, many
studies in the context of geo-spatial human mobility do not directly study navigation
processes in such a continuous manner. Instead, they often use data from call detail
records which are restricted to a discrete set of cell towers [e.g., 214|, or they study
check-in sequences from location-based social networks where navigation is restricted
to adiscrete set of venues |e.g., 378]. And even when GPS tracks are analyzed, which
are not restricted to a discrete state space, these tracks are often discretized, either in a
preprocessing step [e.g., 202, 271] or inherently by the applied methodology [202]. Overall,
discretization is a natural process since human behavior in a geo-spatial context is dictated
by concrete places, venues, or activities which are often bound to certain locations. Thus,
while we may loose some information on local details of human mobility, it is reasonable
to describe the underlying processes based on a discrete state space. For this thesis, this
allows us to formulate a general framework based on discrete navigation which covers
geo-spatial human behavior as well as navigation on the web using the same methodology.

Definition 1 (Discrete navigational data). In this work, we consider navigational behavior
on a finite state space S = {s1,...,sn}. The navigational data we observe on such a
state space consists of a (possibly very large) set of paths D (also called sequences or
trails) generated by a set of individuals U (also referred to as users). Each path p € P

is a sequence of states p =[S, . .. ,sTnp] where ny, > 1 is the number of states visited by
path p. A path can include each state several times. A path p can also be represented
as a sequence of transitions p = [tr, ry, ey rys- oyl i om, | where tr 7 = (87,,87,,,)

represents a pair of states. We also write t; ; for a transition from state s; to s;.

Example 1 (Discrete navigational data). An example of a path dataset D is shown
i Figure 8.1. It depicts a state space S of locations in Manhattan and two paths with
individual lengths by different users.

State spaces. State spaces, on for discrete navigation data, can be defined in a very
flexible manner. That is, there are many variants which represent different levels of
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Figure 3.2.: An illustration of different state spaces for human navigation. The figure
shows raw data as well as different state spaces for human navigation behavior in a geo-spatial
context (a) as well as on the web (b). In this work, we focus on methods for discrete, finite state
spaces. Thus, for the continuous geo-spatial case, navigation traces, e.g., from a GPS, need to
be discretized. (a) shows a grid-based and a venue-based discretization approach. For online
navigation, web pages form a natural state space. However, different levels of abstraction may still
make sense. (b) shows how navigation on articles on Wikipedia can be abstracted to navigation
over categories. Choosing a discretized settings allows for applying the same methodology to
both settings (geo-spatial as well as online navigation), and investigating different abstraction
layers results in a more intricate understanding of human navigation behavior in general.

navigation on the same underlying data. Consider Figure 3.2 where we illustrate different
state spaces with corresponding paths for geo-spatial as well as online navigation.

Figure 3.2a shows a GPS trace from a user exploring Manhattan. To apply the discrete
setting this continuous trace needs to be discretized, i.e., each position is mapped to one
of a finite set of states. There are many different variants to do this. The figure shows
two of them: discretization i) by using a grid where states correspond to grid cells the
users pass through, or ii) by considering venues where each state represents a venue that
users may visit. Further variants of discretizing the geo-spatial space include, for example,
other semantic discretizations (like venues) obtained from background information (e.g.,
tracts or neighborhoods) or using clustering approaches [e.g., 202, 312|. It is apparent that
the choice of the state space strongly depends on the data as well as conceptual level of
human mobility at interest. The grid-based approach may be more useful for fine-grained
navigation behavior while a venue based approach focuses on the more semantic level
of navigation between meaningful places. Both tackle the process of human mobility
on different levels thus each helping to understand different facets of human navigation
behavior. See, for example, Chapter 7 where we employ grid-based as well as tract-based
discretization. For an example of a venue based study, we refer to Noulas et al. [378].

Navigation on the web poses similar challenges. Figure 3.2b shows a browsing trace, e.g.,
from a user navigating articles on Wikipedia [cf. 519]. There, the depicted “browsing trace”
can be directly used in a discretized navigation study by considering the visited websites
as states. However, even though a natural state space arises in the context of online
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navigation, there are still different levels of navigation to be studied. For example, it may
be interesting how users navigate between categories instead of articles on Wikipedia.
Figure 3.2b shows the corresponding abstraction. Along the same line, one of the earliest
articles on online navigation [485] studied a state space of user actions instead of using
the actual pages as underlying concepts.

It becomes apparent that the state space to study is highly flexible and can help to
gain insights into many facets of human navigation behavior. Note however, that the
choice of a specific set of states is not a trivial one. For example, studies in the geo-spatial
context have recognized the “modifiable areal unit problem” (MAUP) [257, 534 which
refers to the problem of choosing appropriate areal units in order to study aggregate
statistics. MAUP consists of two effects: the scale and the zoning effect. The former
refers to variations due to the level of aggregation to be studied, e.g., by altering the size
of the cells in a grid based discretization approach. The latter refers to variations due to
the choice of which data points are aggregated, e.g., by altering the coordinates where
the boundaries of a grid are placed. The same effects can be observed when aggregating
fine-grained state spaces into more coarse ones as has been done in Figure 3.2b. This
makes the MAUP also relevant for the field of web navigation.

Nevertheless, actual observations (such as GPS traces or fine-grained views on navigation
on the web) can and need to be abstracted to be able to efficiently formulate hypotheses
about human navigation. Thus, we need to make sure to carefully choose an appropriate
state space in order to produce results that match the facets of human navigation behavior
to be analyzed.

Summary. In this work, we choose a discretized setting for analyzing navigation pro-
cesses. This allows us to study a very diverse range of different levels and facets of
human navigation behavior using the same methodology. Exploiting this fact, we develop
versatile, novel methods and tools to analyze navigation based on first-order Markov
models which generally require a discrete state space, cf. MixedTrails (Chapter 4) or
SubTrails (Chapter 5). We also leverage the tight coupling of geo-spatial and online
navigation (cf. Figure 3.2). For example, the venues a user visits while exploring Manhat-
tan (Figure 3.2a), may also visit the corresponding articles on Wikipedia (Figure 3.2b).
For example, in Chapter 7 we incorporate knowledge about visitation patterns of venues
on Wikipedia into navigation hypotheses explaining geo-spatial navigation processes.

3.1.2. Background data

Independent of the method, it is evident that — in addition to data containing navigation
paths of users over a set of states — further information, i.e., background data, is needed
to explain navigational behavior. This specifically includes properties of states, users,
as well as paths and their individual transitions. These properties can be drawn from a
multitude of sources. They may materialize as simple binary, categorical or real-valued
attributes. However, they may also incorporate complex relations given by background
information such as semantics [e.g., 373] or ontologies [e.g., 300].

In this section, we give a non-exhaustive list of possibly relevant background information
when modeling human navigation behavior, e.g., for formulating specific hypotheses about
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human mobility (cf. Chapter 7) or web navigation (cf., Chapter 9 or Section 11.2). For
more information on additional factors which may influence human navigation behavior,
we also refer to the sections covering respective related work (e.g., Sections 2.1.4, 2.1.5,
2.2.4 and 2.2.5).

States. In discrete navigation processes, states can have very specific properties. For
example, categories of states play an important role: in the geo-spatial context, we may
consider venue categories such as public transport for the Central Station (in New York)
or touristic for the Statue of Liberty. Then, one hypothesis may state that transitions
from public transport hubs will likely have their destination at areas with many office
buildings, while transitions from touristic venues will favor other touristic destinations.
Similarly, state categories also play an important role in web navigation. For example, in
Chapter 9, we consider the website categories: resource, user, and tag pages.

Besides these straightforward examples, state properties can also include information
on more complex procedures: For states in the geo-spatial context, we may consider to
embed venues into its geographical context such as transportation networks, e.g., in order
to derive actual vs. effective distance. In the context of navigation on the web, similar
distance measures may be derived based on semantic similarity of states or ontologies
embeddings (see West and Leskovec [519], Lamprecht et al. [300], or Chapter 10).

Users. Similar to states, individual users can be associated with properties which
strongly influence their navigation behavior. Again, categories play an important role. For
example, in the geo-spatial context, we may consider tourists vs. locals (cf. Chapter 7) and
formulate a hypothesis that says that tourists are more likely to move towards touristic
locations than locals. And in the context of web navigation, in Chapter 9, we study
several user groups, e.g, based on gender or usage patterns. We have covered further
examples of the influence of user categories in Sections 2.1.5 and 2.2.5.

Similar to states, users can also be described using more complex processes. For
example, we may derive properties based on interactions or sentiments on social networks,
such as friendship relations or emotional ties [116].

Paths. Besides states and users, individual paths (as a collection of transitions) may also
exhibit specific properties. One of the properties of paths which can be used to explain
the observed sequence of states is its purpose or corresponding incentives. For example,
in the geo-spatial context, the purpose of one path may be to get to work, while another
path is the result of a leisurely stroll through a park. The sequence of states and the
probabilities of transitions will most likely be vastly different |e.g., 435]. Other interesting
path properties may include the length of the path, or the time required for completing
it. Similarly, for online behavior there are differences depending on the purpose of the
navigational process, e.g., browsing vs. searching [e.g., 92|.

Transitions. On a more fine-grained level, each individual transition within a path also
exhibits inherent properties, such as the mode of travel |e.g., 483| (in the geo-spatial
context), the start and stop time, or the position within the path (see, e.g., West and
Leskovec [519] or Section 11.2 in the context of search behavior on Wikipedia).

Time. Navigational processes are strongly intertwined with time. For example considering
navigation on Wikipedia, articles and links are constantly created or deleted. This results
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in differing availabilities depending on the time of a transition. Similarly, in Chapter 10,
we consider tasks-choosing in a crowdsourcing environment where the corresponding
campaigns are only available for limited amount of time. In a geo-spatial setting, touristic
venues may only attract tourists during their opening hours. Also, the same user may visit
a city for a business meeting at one time and be a tourist at the other, which may result in
strongly differing navigation paths. Finally, navigational processes in a geo-spatial setting
strongly differ when comparing rush hours and night time, or weekdays and weekends.

History. Navigational behavior of an individual can change within a single path. For
example, in the geo-spatial setting, a tourist may more likely visit locations which are
close to subway stations if she has walked the first half of the day, while a tourist who
started with a bus tour may still be more inclined to walk to places not reachable by
another mode of travel. In Chapter 4, we consider a similar example in a synthetic setting,
where “walkers” choose from red and blue states as their next destination depending on
the history of colors of the states they have already visited.

Semantics and knowledge. As indicated above, semantic relations, e.g., between states
(web sites, places, etc.), can be helpful in explaining human navigation. In particular, in
this work, we use the notion of semantics in many of our studies to explain observed
behavior. For example, we show that crowdsourcing workers prefer to work on semantically
similar tasks. Also see Chapters 9 and 10 and Section 11.2 for further application areas. In
those cases, we use the rather basic notion of semantic similarity based on cosine-distance
between TF-IDF representations of textual descriptions.

However, this is a very limited definition of semantics. That is, the notion of semantics
is often used, especially in the context of the semantic web [60, 337], and can represent
more detailed concepts. For example, information such as articlel Clites article2 or
categoryl IsSubfieldOf category2 may help to explain behavior on publication management
systems like BibSonomy (cf. Chapter 9). There is a wide range of work, defining and
generalizing this notion to advanced structures like ontologies and knowledge bases [468|.

We believe that such knowledge representations can be used to formulate intricate
behavioral hypotheses, thus, further advancing the understanding of human navigation.
However, this task is trivial and is out of the scope of this work.

Summary. In this section, we have listed a small portion of the wide variety of background
information which is essential for explaining human navigation behavior, ranging from
state and user properties, over path and transition properties, to their inherent dynamics.
We use many of the listed properties in our case studies and, thus, refer to Part III for
detailed examples.

3.2. Markov chain modeling
Markov chains, named after a study by A. A. Markov in 1913 [341], were used to model
stochastic processes in a wide variety of domains, such as speech recognition [410], bio-

informatics [272, 470], or weather prediction [186]. In particular, this also includes human
navigation on the web [e.g., 454] and geo-spatial mobility [e.g., 189]. We also build upon

42



3.2. Markov chain modeling

Markov chains in this thesis: We introduce novel methodology for understanding human
navigation and mobility (Part IT), and study various application scenarios (Part III).

In this section, review the corresponding methodological basics on Markov chain
modeling. That is, we first formally define Markov chain models, and then — in order to
give a broader overview — cover some applications and extensions relevant in the field of
human navigation and mobility.

3.2.1. Markov chains

In this thesis, we use Markov chains to model discrete navigational data as introduced
in Section 3.1.1. In the following, we first define Markov chain models formally!, and
secondly introduce the construct of transition count matrices which are required for
practically applying Markov chains in several use cases.

Definition 2 (Markov chain). Given a finite, discrete state space S = {s1,...,sn} (cf.
Definition 1), a Markov chain models finite sequences of random variables of variable
length X1, Xo, ... with values from state space S. These variables abide by the Markovian
property, i.e., the next state is only dependent on the previous state. Formally, we write:

Pr(X,;11 =55 | X1 =54, X0 =5ip,..., X7 =5i,) (3.1)
=Pr(X;41 =5 | Xr =5;,) (3.2)
= Pr(sjls;) (3.3)
=0 (3.4)

Here, Pr(s;|s;) and 6;; are short notations for the transition probability Pr(X,41 =

sj | X =s;) from state s; to s;. The transition probabilities between all pairs of states

(si,85) can be subsumed in a stochastic matriz @ = (0;;), i.e., each row sums up to 1:
0; i = 1. Thus, overall a Markov chain is defined by a state space and the corresponding
] 5J

transition probabilities: M = (S, 8).?

Example 2 (Markov chain). We use the same state space as from Figure 3.1 in Sec-
tion 3.1.1 to to construct an example of a Markov chain: The state space S consists of a set
of venues in Manhattan, e.g., the Central Park scentral, the Times Square Symes, the Statue
of Liberty Sstatue, and the Empire State Building Sempire- People moving between these
venues (either offline, in the case of people, e.qg., exploring New York as tourists, or online,
in the case of people browsing, e.g., Wikipedia) exhibit sequences of states instantiating
a sequence of random variables X1, Xa,.... Figure 3.3 visualizes a corresponding state
space S with (arbitrarily chosen) transition probabilities @ = (6; ). It also shows user

"While there are other variants of Markov processes (e.g., continuous time, or continuous space
models) [422], we focus on a finite, discrete state space and discrete time. We refer to this specific
notion of Markov processes as a Markov chain (model).

*Note that other work explicitly models the probability of the first state (e.g., Singer et al. [454]).
However, this can be implicitly included by introducing a special start state for each sequence with
appropriate transition probabilities. Similarly, when sampling from a Markov chain, it can make sense
to model a stop state which signifies the end of a sequence.
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Figure 3.3.: An example of a Markov chain. We show Markov chain M = (S5,0), with
state space S = {Scentral; Stimes, Sstatues Sempire ; and transition probabilities 8. The Markov chain
is visualized as a graph (right), where transition probabilities of 0 are omitted. At the bottom
we illustrate how user Alice generates a path p,jice by starting at state Scentral and randomly
choosing subsequent states based on the given transition probabilities 6.

“Alice” generating a path by starting at state Scentrar and randomly choosing subsequent
states based on the transition probabilities given by the Markov chain.

In this thesis, we encounter Markov chains in two scenarios: i) for comparing hypotheses
about human navigation (cf. HypTrails in Section 3.3.2 and our own approach MixedTrails
introduced in Chapter 4), and ii) in the context of our pattern mining approach for
discovering subgroups with exceptional transition behavior (Chapter 5). In both cases,
transition counts matrices play an important role.

Definition 3 (Transition count matrix). Given a path dataset D = [p1,...,pm] as
formalized in Definition 1, with paths being represented as sequences of transitions p =
2 tTnp_l,Tnp]} the corresponding transition count matriz Tp is given as:

Tp=(nij)={> Y 1 (3.5)

peDt; j€p

Here, Tp is a matriz where each entry n; ; represents the number of transitions observed
between each pair of states (s;,s;) over all paths p € D.
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Example 3 (Transition count matrix). As an example, given the path dataset D =
{Daiices Pvob} from Figure 3.1 in Section 3.1.1 with
Palice :[Scentmb Stimesy Sstatues Scentrals Stimes] (3
Pboob :[Sstatue7 Sempirw S centrals Stimes]7 3.7

we get the following transition count matriz Tp:

0300
0010

Io=11 ¢ 0 1 (38)
1000

As mentioned earlier, such transition count matrices play an important role with regard
to the methodology applied throughout this work: i) For comparing hypotheses about
human navigation, calculating the likelihood of a specific parameter instantiation of a
Markov chain is essential. ii) For mining subgroups with exceptional transition behavior,
we fit Markov models to various subsets (e.g., old vs. young people) of a path dataset in
order to judge their particular navigation characteristics. In the following, given a path
dataset D, we briefly cover the corresponding aspects of calculating the likelihood of a
parameter instantiation, and of fitting a Markov model to the data.

Calculating likelihood. If a Markov chain M = (5, 0) is given, as in Figure 3.3, we
can calculate the probability Pr(D|@) of observing the paths in D, where Pr(D|0) is also
called the likelihood of the transition probabilities 6 given the data D. After deriving the
transition count matrix Tp = (n; ;) from D, we calculate the likelihood Pr(D|0) using
the following formula:

Pr(D|0) =[] 6" (3.9)
2

For the Markov chain from Example 2 and the data from Example 3, we then calculate:

TMcentral,times Tltimes,statue Tlstatue,central Tlstatue,empire Tlempire,central
Pr(D|) = glecrmabiimes | plitimes statue | gstatuc central | gistatuc empire | gllempire (3.10)
central,times times,statue statue,central statue,empire empire,central

:13_(%)1.@)1.(%)1.11 (3.11)
:% (3.12)

Fitting to data. If no transition probabilities are given, we can fit a Markov chain to the
observed data, i.e., by inferring a transition probability matrix 8p = (ng) from the path
dataset D (instead of setting it arbitrarily as in Example 2). For this, we normalize each
row of the transition count matrix Tp: @p = (ni.i/3;ni ;). For the data from Example 3,
this results in slightly different transition probabilities than the arbitrarily chosen ones in
Example 2:

0 1.0 O
0 01 O

Op = (nii/>;niy) = s 0 0 1 (3.13)
1 00 O
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If the transition probabilities 8 from Example 2 match the underlying navigational process
of the observed phenomenon, the difference to the derived transition probabilities @p will
decrease.

3.2.2. Related work

In this section, we cover extensions and applications related to Markov chains.

3.2.2.1. Extensions

Depending on the naming scheme, Markov chains, as we use them in this work, can be
considered to be a special case of the more general notion of Markov processes, which is
an intensively studied model class. Markov models are stochastic models which essentially
are all using processes based on the Markov property. This means that — in some manner
— they incorporate a random sequence of states where the next state only depends on the
current state. In this section we review a set of selected instances of Markov models in
order to give a short overview of this model class. For this, we mainly focus on Markov
models where the random sequence of states is directly observable and where the process
is not influenced by external factors (i.e., autonomous).

Space and time. In general, there are two fundamental concepts associated with Markov
models that are often varied, that is, the state space and the notion of time. With regard
to the state space, there are countable (or finite) state spaces contrasted by the continuous
(or general) state spaces. With regard to time there are discrete-time and continuous-time
variants of Markov models. While we employ a discrete-time, discrete (and finite) state
space model (cf. Section 3.2.1) as introduced by Markov in 1913 [341], continuous-time
Markov processes are also often studied. For example, continuous-time, discrete-state
models, also called semi-Markov processes [422|, were introduced by Kolmogorov in
1931 [14] and allow to stay at each state for a random amount of time. The Poisson
process can be considered to be an example of this model variant [164|. With regard to
continuous-time, continuous-state models, processes like the Wiener process or Brownian
motion [191] are well known.

Additional dependencies, higher orders, and mixture models. To address differ-
ent challenges of modeling (web) navigation, such as data sparsity or overfitting [454],
various variants and extensions of Markov chains were developed. All of them involve
adding additional dependencies and information in some manner. Davison [134] gives
an overview of such methods based on Markov models including: higher order Markov
models [e.g. 69], Markov trees |e.g. 434], or PPM (prediction by partial matching) [e.g.
104]. Other models like the relational Markov model [13] exploit hierarchical relations of
web pages (for personalization purposes).

Of the mentioned extensions higher order processes are an often studied field, i.e.,
where states depend on a longer history of observations [71, 114, 115, 141, 486]. For
example, Singer et al. [454] studied which order of Markov chains best models the memory
structure of human navigation on the web (also see Section 2.2.3.1). While higher order
Markov chains are more expressive, their complexity increases exponentially when the
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order of the model increases requiring large amounts of data in order to derive accurate
transition probabilities. Thus, a variety of approaches emerged which introduce more
flexibility into the Markov chain without relying on increasing the order [e.g., 292]|. Such
models include (but are not limited to) the Mixture Transition Model by Raftery [413],
or the Variable Length Markov chain [70, 71, 79]. The former model uses a set of lag
variables which adjust the transition probabilities given the current state by mixing in the
transition probabilities from previous states. The latter [79] allows for variable memory
structures by introducing a proxy function which — based on the complete history of
states — chooses the number of past states to be considered for deriving the current
transition probabilities (which results some kind of auto-correlated process).

There are also models which consider several separate transition probability matrices (cf.
Figure 3.3) mixing them in some manner. In that direction, the Mized Markov chain
model was studied by Poulsen [405] in the context of customer behavior segmentation.
Poulsen defined groups, each with its own transition probability matrix. Group mem-
bership probabilities are then assigned to each sequence of observations. Similar group
memberships are used by Rendle et al. who factorized Markov chains [419] and by Gupta
et al. [223] who reconstructed mixtures of Markov chains [223|. Others define more
complex group assignments and transition probability mixtures (e.g., Wallach [504]). In
our work [41], we also use a mixed Markov chain model, specifically to compare hypotheses
on the underlying processes of heterogeneous sequence data as introduced in Chapter 4.
We define a model where formulating hypotheses is flexible (e.g., it allows for group
assignments on a transition level instead of a sequence level as in the work by Poulsen
[405]). Also our model is by design straightforward to interpret (in contrast, e.g., to
Buhlmann and Wyner [79] or Wallach [504]). See Chapter 4 for details.

Switching processes. Markov switching processes [e.g., 177, 411] model observations
dependent on hidden Markovian dependency structures. Some classic instances in this
class are the Hidden Markov Model [411] (HMM), the Factorial HMM [199] or the Auto-
Regressive HMM [227] (also see Bengio [52] and Murphy [370] for further extensions).
There are also methods based on, or related to, these methods which are used for prediction,
labelling, clustering or segmentation [84, 171, 181, 212, 347|. This includes, e.g., Bayesian
non-parametric methods [177, 482] which adjust their complexity based on the data. Such
models are also related to our hypothesis comparison approach, MixedTrails [41], where
transitions may stem from different transition probability matrices dependent on time
(see Chapter 4 for details).

Further extensions. There are also a variety of other models explicitly or implicitly
using Markov models. For example hierarchical models are especially studied in the
context of Hidden Markov and Markov switching models [173|. Here, observations are
dependent on complex hidden structures which are modeled as a hierarchy of Markov
chains. Furthermore, there are Markov decision processes [49, 408| where state transitions
emit rewards and do not only depend on the current state but also on a chosen action
from a set of available actions per state. Usually the goal is to find a policy for choosing
actions that maximize the reward. Finally, we also want to mention Markov random
fields [278], also called Markov networks, where a set of random variables assumes values
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from a set of vertices of an undirected graph and satisfies certain Markov properties, i.e.,
the pairwise, local, and global Markov property. Markov random fields are for example
applied for (3D) image processing [142], or image segmentation [239]. However, they are
usually not applied to analyzing or understanding sequential processes as we aim to do in
this work.

3.2.2.2. Applications

Markov chains and their variants are applied in a wide range of application domains, e.g.,
for descriptive and explorative analysis, modeling of real world processes, or prediction. In
the following, we give pointers to approaches using Markov chains for geo-spatial behavior
as well as web navigation, and provide a short overview on other application domains for
which Markov chains are used.

Geo-spatial behavior and web navigation. Many human mobility models as reviewed
in Section 2.1.3 also are inherently based on Markovian structures, i.e., they study and
model transition counts between different locations [e.g., 165, 330, 345, 378, 450]. Also,
Markov chains are often used to model switching processes between a set of movement
behavior classes, e.g., employing Hidden or Mixed Markov models [18, 171, 258|. And
finally, prediction tasks are an important application of Markovian models in the geo-
spatial domain [e.g., 189, 252].

For the application of Markov chain models in the field of web navigation, we refer to the
corresponding background section (Section 2.2.3), were we explicitly discuss applications
like descriptive and explorative use cases [145, 485|, behavioral clustering [81, 406], or the
analysis of memory structures involved in navigational processes on the web [111, 454].

Other application scenarios. Besides web navigation and human mobility, Markov
himself studied the transition probabilities between vowels and consonants in Alexander
Pushkin’s novel Fugene Onegin [cf., 236, 341]. Furthermore, a classical introductory
example for Markov chains is weather prediction, for which they were also used in practice
[186]. Furthermore, the Markov chain model and its extensions are used in the field
of genetics [277], software testing [525], or information theory [443], for analyzing and
modeling genetic algorithms [209, 376|, in chemistry for modeling molecule growth [296],
or in finance for modeling credit risk [255|, as well as for generating lyrics [36] or
melodies [386]. Finally, Markov chains also are the underlying concept of Hidden Markov
models which are, for example, widely employed in the fields of speech recognition [410]
and bio-informatics [272, 470].

One more prominent example for the application of Markov chains worth mentioning is
their integral role in the Markov Chain Monte Carlo (MCMC) framework, which is the
basic concept for many other techniques, extensions, and applications [76]. Particularly,
the MCMC framework is applied to evaluate posterior distributions in complex Bayesian
models [203]. Here, each state in a Markov chain represents the value of a sampled
variable (e.g., the parameters of a model) and the stationary distribution of the Markov
chain corresponds to the probability distribution (e.g., the posterior) for that variable. In
this context, two prominent instances of MCMC are the Metropolis-Hastings algorithm
for arbitrary models and the more specialized Gibbs sampler which — in its basic form —
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3.3. Comparing navigational hypotheses using HypTrails

is a special case of the Metropolis-Hastings algorithm and takes advantage of conjugate
priors |76]. Also note that the output of both methods can be used to estimate marginal
likelihoods, which is useful for calculating Bayes factor [273] when analytical inference is
infeasible {109, 110].

3.3. Comparing navigational hypotheses using HypTrails

In this thesis, we aim to explain the underlying processes of human behavior in the
form of human navigation on the web as well as geo-spatial human mobility based on
different theories, existing literature, domain experts, previous experiments, or intuition
(cf. Part III). In other words, we formulate hypotheses which compete to describe the
same set of data [287]. This problem setting is called model comparison. In the context
of this thesis, the most important approach to model comparison, is based on Bayes
factors [474], which have the advantage of an automatic, built-in Occam’s razor balancing
the goodness of fit with complexity [273]. In particular, a major part of our work is based
on HypTrails (cf. Section 3.3.2) by Singer et al. which employs Bayes factors. We use it
to “compare hypotheses about human trails on the web” [453] as well as in a geo-spatial
context (cf. Part IIT), and we extend HypTrails to heterogeneous sequence data with our
approach MixedTrails (cf. Chapter 4).

In this section, we first introduce the notion of Bayesian model comparison (Sec-
tion 3.3.1). Section 3.3.2 then builds upon this to review the HypTrails approach, which
is one of the methodological foundations of this work. Finally, we also briefly summarize
other methods for model comparison (Section 3.3.3).

3.3.1. Model comparison using Bayes factors

Given an arbitrary set of observed data, we may have different ideas on how this data
was generated. Such ideas are often formulated as statistical processes, i.e., mathematical
models generating random samples of the data [289]. For example, when observing a
sequence of numbers, e.g., 5,2,3,1,1,2 we can assume it was generated by rolling a
dice (M;), thus expecting that each number is independently drawn from a categorical
distribution. Or we can model each number as a state and introduce dependencies to the
previous number (M;) as is modeled by Markov chains (as introduced in Section 3.2).
Note that both models have parameters which need to be set: The dice may be fair or
loaded, and for the Markov chain we need to set transition probabilities.?

Now, let us consider a finite set of such models M = {M;, Mo, ...} which compete for
describing some dataset D. The goal of model comparison is to establish a partial order £
on this set of models [453|, i.e., M; T M; denotes that M; describes the data similarly
well or better than M;. To find such a partial order, the concept of Bayes factors can be
used. It follows the intuition that each model M; has a prior probability Pr(M;), which
represents the probability of model M; before seeing data. Such prior probability can
stem, for example, from theory, previous experiments, or intuition. After seeing the data,

3Markov chains are equivalent to a dice when the transition probabilities are the same for each state.
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Figure 3.4.: An illustration of Bayes factor. The Bayes factor is a measure of how much the
probability for each model shifts after seeing data. This figure shows two models (M, M;) which
are equally likely before seeing the data (prior). However the probability (posterior) strongly shifts
in favor of M; after seeing the data. If this shift is strong enough [273], then M; is considered to
describe the data better.

this (prior) probability gets redistributed between the models resulting in a posterior
probability Pr(M;| D), which can be calculated using Bayes rule:

likelihood of M;  prior of M;
Pr(D|M, Pr(M,
PI'(Mz’D) — I'( ’ ’5) I'( l)

posterior of M;

(3.14)

marginal likelihood over M

This redistribution is illustrated in Figure 3.4 with two models M; and M;. Now, Bayes
factor is a pairwise measure of how much the probability for two models M;, M; shifts
after seeing the data and can be expressed using prior and posterior odds [273]:

Pr(M;|D) Pr(M;) . Pr(D|M;)

el S A > F , with B; j = ————¢ 3.15
Pr(M;|D) — M Pr(ay) o UM T Pr(DIM;) (3.15)
posterior odds prior odds Bayes factor

Here, the Bayes factor is the ratio of the model likelihoods:* Pr(D|M;) and Pr(D|M;).
If the shift towards one of the models, e.g., M;, is great enough then it is said that M;
describes the data better than M;. Note that if we assume all models to be equally likely
a-priori Pr(M;) = Pr(M;) (as often done in Bayesian model comparison), then the Bayes
factor directly implies the posterior probabilities of the models, cf. the derivation of Bayes
factor in [273].

The strength of evidence and its interpretation. The likelihoods Pr(D|M;) and
Pr(D|Mj;) are also called evidence because they provide relative evidence for one or the
other model to describe the data better. To interpret if there is enough evidence to voice
a meaningful preference, Kass and Raftery [273] give a guideline based on a threshold ¢.
In particular, they consider the natural logarithm of Bayes factor:

8.(815) =108, (pripiag) ) = 1or(Pr(DIM) ~ og (Pr(DIV)  (3.10)

4With regard to notation: The likelihood £ of a model M; given the data D is defined as the probability
of the data given the model: £(M;|D) := Pr(D|M;). In this work, we use the probability notation.
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and say, that there is “very strong” evidence for M; to be a better description of the data
if log,(B;,j) > t and that there is “very strong” evidence for M; to be a better description
if log,(B;,;) < —t. For this, Kass and Raftery generally use a threshold of ¢ = 5. This is
more conservative than previously suggested thresholds [256]. Even so, Kass and Raftery
suggest higher thresholds for specific use cases (e.g., for forensic evidence it should be set
higher than in other cases). Thus, in this work, we opt for a more conservative threshold of
t = 10 to consider one model to be superior to another. Finally, we want to emphasize that
using Bayes factor inherently incorporates Occam’s razor [273, 336], that is, it prevents
overfitting by preferring simple models over complex ones where the complexity is not
needed to explain the data. This is an important property when designing hypotheses
about human navigation behavior especially in the context of heterogeneity where, for
example, hypotheses can get overly complicated when introducing a large set of groups
with different navigational characteristics (cf. Chapter 4).

Priors and hypotheses. As shown above, to use Bayes factors we need to calculate
the likelihood Pr(D|M;) of each model M; given the data D. In this context, each model
M; has its own set of parameters where each parameter configuration has a specific
probability. The corresponding probability distribution Pr(u;|M;) is called the prior over
the different parameter settings p; of model M;. Then, Pr(D|M;) is calculated as the
marginal likelihood over the parameter space of M;:

PI‘(D|MZ) = PI‘(D‘p,i,Mi) Pr(ui|Mi) dp,i (3.17)

i
* likelihood of p;  prior of p;

In other words the likelihood of a model is defined by marginalizing over all its possible
parameter configurations weighted by their prior probability Pr(u;|M;); hence the name
“marginal probability”. While the model structure defines the likelihood Pr(D|u;, M;) of
the parameters, choosing the prior is not an easy task [194, 273] since Bayes factor can
be very sensitive to this choice and employing an uninformed prior (i.e., all parameter
configurations are equally likely) is not always the best choice [273]. While this can be
inconvenient, it can also be considered an advantage. In particular, Kruschke [287|, Rouder
et al. [423], and Vanpaemel [496] advocate to leverage this property to compare hypotheses.
That is, they propose to encode theory-induced hypotheses into priors. Accordingly, there
are many studies which discuss how to elicit informative priors appropriately [194, 382,
495, 497|. In this work, we use and extend HypTrails (cf. Section 3.3.2), which is based
on exactly this notion to compare hypotheses about human navigational behavior.

Approximation. An important issue that arises when using Bayes factors is the fact
that estimating the likelihood Pr(D|M;) of a model can be analytically challenging or
computationally intractable [273]. While there is an analytical solution in the case of
HypTrails (cf. Section 3.3.2), which we use throughout this work, there exist a variety
of other models where such a solution is not available. One example is our extension of
HypTrails called MixedTrails (cf. Chapter 4) where we had to derive a sampling scheme.
For the general case, there is a variety of other methods for calculating the marginal
likelihood based on sampling and approximation including Markov Chain Monte Carlo
methods or a Laplace approximation. For a more detailed overview on these methods we
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Figure 3.5.: Hypotheses about strategies in a soccer game. In this figure, we show an
illustrating soccer example to which HypTrails can be readily applied: We are interested in a
team’s strategy in a specific game. We have recorded and counted the passes between players
as well as shots on the goal and represent them as transition counts between the states of a
Markov chain (a). Based on this data HypTrails allows researchers to compare hypotheses about
sequential data that express beliefs in transition probabilities (b-d, strength of belief indicated by
line width). Utilizing Bayesian inference, it then determines the evidence of the data (a) under
these hypotheses (b-d) and ranks the hypotheses based on their plausibility; in this case, even if it
is not a perfect match, the defense hypothesis (d) can be considered the relatively most plausible
one (cf. Section 3.3.2.1).

refer to Kass and Raftery [273] and more recent overviews by Friel and Wyse [179] and
Han and Carlin [228].

3.3.2. The HypTrails approach

Hypotheses about human navigation, as we study in this theses, are usually abstract
concepts and can stem from a variety of sources including existing theories, domain
experts, previous experiments, or intuition. HypTrails provides an approach to formulate
and compare such hypotheses with regard to the relative plausibility for each hypothesis
to have generated the data. Figure 3.5 shows an illustrating example in which we
depict competing hypotheses about the strategy of a soccer team during a specific game.
Figure 3.5a shows the number of passes between players and shots recorded during a game,
i.e., the data. Figure 3.5 (b-d) list various hypotheses including a uniform hypothesis,
where players pass around randomly, an offensive hypothesis, and a defensive hypothesis.
In the course of this section, we will see that the defensive hypothesis explains the
strategy of the team well but does not quite cover all aspects of the players’ behavior
(cf. Figure 3.6). To achieve this, HypTrails employs Bayes factors as described in the
previous section (Section 3.3.1). In particular, HypTrails is a special case of Bayesian
model comparison, where the model M; is fixed to a Markov chain and hypotheses are
encoded into the prior probability distributions over the model parameters p;.
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3.3. Comparing navigational hypotheses using HypTrails

In the following, we first explain how hypotheses are formulated in the HypTrails
framework and how they are compared on a practical level. In this context, we specifically
focus on the notion of different belief levels (i.e., how much error a hypothesis is allowed
with regard to the observed data). This enables a more detailed and robust comparison of
hypotheses than when using a single parameter instantiation. Then, we summarize how
the previously introduced Bayes factors are utilized to allow for comparing hypotheses
based on marginal likelihoods and argue that hypotheses can be encoded as priors over
Markov chain parameters within this framework. And finally, we elaborate on the process
of eliciting hypotheses as such priors based on different levels of belief.

3.3.2.1. Formulating and comparing hypotheses

For comparing a set of hypotheses H = {Hj, Ha, ...} about the underlying processes
of sequential data, HypTrails [453] builds on (first-order) Markov chain models (cf.
Section 3.2). That is, it formulates each hypothesis H as a matrix of transition probabilities
¢ = (¢i;) between a fixed set of states S = {si,...,s,}. Some examples for the
hypotheses in Figure 3.5 are given in Figure 3.6a. For example, the uniform hypotheses
Hniform assumes that the soccer players are passing the ball randomly. Thus, we set the
transition probability of the ball between all players to 1/m—1 where m is the number of
states in S. We exclude self-transitions, since players usually do not pass to themselves,
hence m — 1 instead of m. In contrast the offense Hygense hypothesis assumes that strikers
will always shoot at the goal (¢35 = ¢a5 = 1), and defense players will always pass
towards strikers with a preference to flank (¢13 = P24 = 3/4, P14 = ¢23 = 1/4). Note
that in Figure 3.6a, we have left out the transition probabilities from the goal to the
players since we are only interested how the players from the analyzed team behave and
not the goal keeper of the opposing team.

Given a sequence dataset D in the form of a transition count matrix T (derived from
Figure 3.5a, cf. Definition 3), HypTrails then establishes the relative plausibility for
each hypothesis to have generated the data with regard to different strengths of belief x
(also called concentration factor). As a measure for plausibility HypTrails calculates the
marginal likelihood P(D|H) (also called evidence) of each hypothesis H by encoding the
hypothesized transition probabilities (cf. Figure 3.5) as priors of a Markov chain with
regard to the given concentration factor. The results shown as evidence plots as depicted
in Figure 3.6b. For technical details on encoding hypotheses as priors as well as eliciting
priors as hypotheses please refer to the subsequent Sections 3.3.2.2 and 3.3.2.3.

Interpretation of evidence. The marginal likelihoods (or evidences) in Figure 3.6 are
reported on a log-scale. Using this scale and considering a single concentration factor «,
a hypothesis (H;) is considered to be more plausible than another (Hj) if its marginal
likelihood P(D|H;) is sufficiently larger than the marginal likelihood P(D|H;) of Hj,
where the sufficiency is determined by a threshold ¢. As already mentioned in Section 3.3.1,
in this work, we opt for a threshold of ¢ = 10 as inspired by Kass and Raftery [273]. Also,
note that HypTrails only compares hypotheses on a relative scale. That is, it establishes
a relative order based on which hypothesis can be ranked. However their absolute ability
to model the data can not be judged.
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Figure 3.6.: Several formulated hypotheses and an evidence plot created by Hyp-
Trails. (a) shows the transition probability matrices derived from the hypotheses visualized in
Figure 3.5. Note that we have left out the transition probabilities from the goal to the players
since we are only interested in how the players from our team behave and not the goal keeper of
the opposing team. Also, we have added another hypothesis @qefense (with shots) allowing for some
shots at the goal while still playing defensively. (b) shows the results of HypTrails for increasing
concentration factors. As it turns out our new hypothesis works best. The defense hypothesis on
the other hand covers some important behavioral factors but neglects the occasional shot at the
goal. This is why it first achieves high marginal likelihood values which then strongly decrease.
This illustrates how HypTrails can provide a more detailed analysis of behavioral processes than
scalar comparisons can (e.g., based on AIC or BIC, cf. Section 3.3.3).

Concentration factors. The concentration factor k is a measure to weight simplicity
against accuracy. Its technical formulation follows in Section 3.3.2.3. On an intuitive
level, simplistic hypotheses (concentrating their probability mass on a limited set of highly
frequented destinations) are favored by small concentration factors, and hypotheses fitting
the overall data extremely well (possibly spreading out their probability mass to many
different destinations) are favored by large concentration factors. For example, if we
favor a simple hypothesis, i.e., we very strongly believe (high concentration factor k)
that the transition from state s; € S to state s; € S is the only option for transitions
starting at state s; (¢;; = 1), but we observe transitions from s; to other states as
well, then the plausibility of the corresponding hypothesis will be very low, even if the
hypothesis is mostly correct. If however, we set the concentration factor to a less extreme
level, thus allowing for some inaccuracies, such a “simple” hypothesis that does not quite
match the data can still achieve respectable plausibility values. More concretely, in
Figure 3.6b, Hgefense cOvVers a very strong component of the observed data while being
relatively simple, i.e., it believes that the players exclusively play defensively by passing
the ball from side to side or backwards. Hypiform Oon the other hand assumes that all
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3.3. Comparing navigational hypotheses using HypTrails

passes and shots are equally likely. It spreads out its probability mass and looses a lot
of accuracy. However, it allows for transitions that the defensive hypothesis rules out.
Thus, for larger concentration factors it benefits from its vagueness and does not suffer
strongly decreasing marginal likelihoods as the defense hypothesis does. Nevertheless,
the fact that it does not reach the high marginal likelihood (compared to the defense
hypothesis), allows to conclude that it does not cover important processes present in the
observed data. The new hypotheses Hyefense (with shots) SOmewhat alleviates this issue by
extending the defense hypothesis by including shots at the goal. This allows for a more
stable marginal likelihood.

Thus, overall, using a range of different concentrations factors x (different levels of
belief), can help to compare a set of hypotheses in more detail than fixing a single belief
for each hypothesis. For further examples, also see our studies in Part III where we
extensively use HypTrails.

3.3.2.2. From model comparison to hypothesis comparison

To allow comparing hypotheses about sequential data via marginal likelihoods as outlined
in the previous section, HypTrails operationalizes Bayesian model comparison (cf., Sec-
tion 3.3.1), i.e., it uses the notion of Bayes factor. However, instead of comparing different
models, HypTrails encodes hypotheses into the prior distribution over the parameters of a
single class of models. As mentioned in Section 3.3.1, this approach has been advocated by
a variety of researchers [287, 423, 496]. In this context, HypTrails uses (first-order) Markov
chains Mo (see Section 3.2) as its underlying model and encodes hypotheses into the
prior distribution Pr(@|H, Myc) over the corresponding transition probabilities 8 = (6; ;).
It then calculates the marginal likelihood (also called evidence) of a hypothesis H given
the data D (cf., Equation (3.17) where the hypothesis is included in the model):

Pr(D|H, Myc) = /Pr(Dyo,MMC) Pr(0|H, Myc) do (3.18)
—_———
marginal likelihood of H likelihood of @ prior of 6

Since HypTrails only uses Mys¢ as the underlying model, we can simplify the notation to:

Pr(D|H) = / Pr(D|@) Pr(9|H) d6 (3.19)
———
marginal likelihood of H likelihood of @  prior of 6

Now, having calculated the marginal likelihood of two hypotheses H; and H; they are
compared using Bayes factor:

_ Pr(D|H;)

B . —
"7 Pr(D|Hj)

(3.20)

As mentioned before (Sections 3.3.1 and 3.3.2.1), if the logarithm of Bayes factor exceeds a
certain threshold (¢ = 10) one or the other hypothesis is considered to be more plausible in
the context of the given data D. Also, note that if we assume all hypotheses to be equally
likely a-priori Pr(H;) = Pr(H;), as often done in Bayesian model comparison, then the
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Bayes factor directly implies the posterior probabilities of the models, cf. Section 3.3.1. In
the following we clarify how a hypothesis H in combination with a concentration factor s
can be encoded into the prior distribution Pr(@|H) in order to compare hypotheses as
showcased in Section 3.3.2.1.

3.3.2.3. Eliciting priors from hypotheses

In Section 3.3.2.2, we have reviewed that model comparison can be employed for com-
paring hypotheses about sequential data, i.e, by encoding hypotheses as priors over the
parameters of a Markov chain. In this section, we first show how Dirichlet priors can
be operationalized to define the corresponding prior probability distributions. Then,
we clarify how hypotheses (represented as transition probability matrices ¢ = (¢; ),
cf. Figure 3.6a) in combination with a concentration factor x are converted into the
parameters of a Dirichlet prior. This process is called elicitation.

Marginal likelihood and Dirichlet priors. HypTrails uses Dirichlet priors to encode
a hypothesis as probability distributions over the parameters of a Markov chain. In
particular, for each state s; an individual Dirichlet prior Dir(e,) is used. Each “state
prior” Dir(ea,;) defines a probability distribution over the transition probabilities O,
from each state s; to all other states: 65, ~ Dir(as,). The parameters ay, are vectors
of positive numbers, i.e., a5, = (@i1,...q; ) where a; ; € RT. A Dirichlet distribution
Dir(ay,) with «; j = K- ¢;; + 1, can be pictured by assuming ¢, = (¢i1,...¢in) as
the core transition probability distribution from state s; to all other states, and k as
the concentration around ¢; for transition probabilities 65, sampled from Dir(as,). See
Figure 3.7 for an illustration.?

Given a sequence dataset D in the form of a transition count matrix T' = (n;;), the
formula to calculate the marginal likelihood Pr(D|H) of a hypotheses H represented by a
Dirichlet parameter matrix o = (a; ;) is:%

L s, es @ig) Is,es T(nig + aiy)

P(DIH) = H Hsjes (e 5) F(ZSJES i+ Qi)

$;ES

(3.21)

Elicitation. The next step is to elicit a parameter matrix o = (¢ ;) from a hypothesis H
represented by a transition probability matrix ¢ = (¢; ;) and given a specific concentration
factor k (or strength of belief). In other words, we aim to encode the information about
transition behavior (¢) together with a certainty or accuracy (k) into the Dirichlet priors
used by HypTrails. In this work, we use a slightly modified version of the approach
proposed by the original HypTrails paper [453|. In particular, analogously to the example
in Figure 3.7, we use a stochastic hypotheses matrix ¢ = (¢;;), and, given a specific
concentration factor x, we calculate the entries of parameter matrix o = (o ;) as follows:

Q;j = K- (Z)m‘ +1 (3.22)

®Many thanks to Thomas Boggs for providing the code for the visualization in Figure 3.7:
https://gist.github.com/tboggs/8778945, accessed: December 2017

See Singer et al. [454] for a derivation. Note however, that we do not explicitly incorporate the
probability of the start state since it can be modeled as a dedicated regular state.
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Figure 3.7.: Dirichlet distributions with various parameter settings. This figure
shows the distribution of transition probabilities 85, from state s; of a Markov chain with
three states according to various Dirichlet distributions: 8,, ~ Dir(as,). For the parameters
o, = (k- ¢, + 1), we use two core probability distributions, ¢, = (1/3,1/3,1/3) and ¢} =
(1/2,1/2,0), with varying concentration factors k € {1,6,24}. Generally, the transition probability
distributions 6, are sampled around the respective core transition probability distribution. For
increasing concentration factors « the transition probability distributions 8, sampled form the
corresponding Dirichlet prior will be more concentrated.

The +1 adds the proto-prior that is necessary to ensure proper priors. Also, if kK = 0,
every transition probability configuration is equally likely (referred to as a flat prior,
cf. Singer et al. [453]). Note that in some experiments it can make sense to scale the
concentration factor s for better interpretation. That is, we multiply the concentration
factor by the number of states n, resulting in the following formula for the entries of the
parameter matrix: a;; = k- n - ¢; ; + 1. We use this scaling in most of our experiments
(cf. Part III). For each case study we explicitly point out if this is the case.

Alternative elicitation processes. The original HypTrails paper [453] proposes to
use a slightly different approach based on the trial roulette method [133, 217, 382]. It
distributes a fixed number of integer-valued chips across all entries in the parameter
matrix e = (o j). The overall number of chips is calculated as m? + k - m? where k —
similar to k — represents the strength of belief. The chips were distributed as integer
values where each entry of o receives at least one chip (a;; > 1). The remaining chips
are distributed according to a (non-stochastic) hypothesis matrix with entries ranging
from 0 to 1. For details please see the original paper [453].

However, using non-stochastic hypothesis matrices results in a different number of chips
per state, that is Zj «; j is not necessarily equal to Zj ar j for two states s;, s € S. This
can lead to weighting the importance of states differently and thus making the results
difficult to interpret. Also, the global distribution of integer-valued chips makes the
elicitation process harder to distribute across several computation nodes (cf. Section 6.1).
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Nevertheless, the original elicitation process may be considered to be more natural in a
sense that integer-valued chips are used together with the notion of trial roulette. Also, it
is more flexible in its ability to weight source states. With regard to our methodological
contribution in Chapter 4, both processes can be used without restrictions. For our
experiments in Part III, we found our own variant to be more practical due to the
mentioned consistency across states as well as computational efficiency.

Concentration factors to avoid over-specification. In the general framework of
Bayesian model comparison, choosing priors for the corresponding model parameters
is not an easy task since usually a variety of information has to be taken into account
including relevant data, literature, and in particular the corresponding certainty, i.e., the
strength of belief. HypTrails somewhat alleviates this issue by formalizing the suggestion
by Kass and Raftery [273] to compare several prior instantiations by using a range
of concentration factors k = {ki,k2,...}. This allows for a structured and detailed
comparison of hypotheses as described in Section 3.3.2.1.

3.3.3. Related work

Besides using Bayes factor there are several other methods for model comparison. In the
context of establishing the order of Markov chains used for modeling human navigation on
the web, Singer et al. [454] summarized several methods for model comparison. We follow
their example and, beyond covering Bayes factor (Section 3.3.1), outline Frequentist and
information theoretic approaches. For another overview on methods for model comparison
also see for example Piironen and Vehtari [399] and Vanpaemel [496].

Frequentist approach. There are two major schools in statistics, that is the Frequentist
approach and the Bayesian approach. We already covered a Bayesian approach for model
comparison by introducing Bayes factor in Section 3.3.1. In the Frequentist context, one
way to establish if a model describes the data better/best is when all other models are
rejected with regard to their goodness of fit, i.e., by using p-values [120]. In particular,
after fitting a specific model to the data, a proxy measure is used to calculate the difference
of the data to the model. This difference is compared to the difference of simulated data
from the fitted model. If the difference of the simulated data to their respective fits is
generally smaller (small p-value), the model is rejected. For a more detailed discussion see
Clauset et al. [120] who describe this methodology in the context of proving a power-law
fit using the Kolomogorov-Smirnov statistic [441] as a difference measure. Of course, this
method can only establish a single model to describe the data best, i.e., if all other models
can be rejected. Among the models which were not rejected, none can be considered
better than the other.”

In cases where rejecting all models but one is not possible, i.e., where we have to choose
from a set of non-rejected models, approaches like the likelihood ratio test [90, 372] can be
used (as exemplified by Clauset et al. [120]).® For the likelihood ratio test, the parameters

"Even so, Clauset et al. suggest that, generally, a model with a very large p-value can be considered to
describe the data better than models with a very small p-value.

8In addition to the previously introduced Bayes factor, Clauset et al. [120] also mention alternatives like
cross-validation [472] and minimum description length [220].
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of each model M; are optimized using the maximum likelihood estimate [303, 424], i.e.,
the parameters are adjusted in order to maximize the likelihood Pr(D|M;) of the model
given the data. Then, to compare two models M;, M; the logarithm of their likelihood
ratio log(Pr(D|M;)) — log(Pr(D|Mj;)) is examined. Depending on the sign, one or the
other is considered to describe the data better. To ensure statistical significance, p-values
are used to check if the established order has to be rejected. However, in the general
case it is not an easy task to formulate the distribution of the likelihood ratio required to
calculate these p-values [317]. Thus, while unified approaches exist [317], usually” the
likelihood ratio test is only used for nested models because then the likelihood ratio is x?
distributed [528| and, thus, the p-value can be easily computed. Note that this way, it is
only possible to reject a simpler (nested) model [120].

Generally, the Frequentist methods mentioned so far can only be used to reject certain
models. Thus, they can not establish (or directly confirm!®) a partial order on a set
of hypotheses as is desirable in the model comparison setting. Also note that for more
general tests in the Frequentist settings, the use of p-values has to be treated with care
and has often been criticized [89, 121, 196, 215, 367, 380].

Information theory. Among others [e.g., 119, 231, 464, 511], there are two prominent
information theoretic measures for model comparison, namely the AIC (Aikaike Informa-
tion Criterion) and the BIC (Bayesian Information Criterion). While AIC [9, 10] can also
be interpreted in a predictive setting, it is originally based on approximating the loss of
information with regard to the Kullback-Leibler divergence [291] when using a particular
model to describe the data. BIC — sometimes called the Schwarz criterion because it has
been proposed by Schwarz et al. [439] — approximates the Bayes factor [273, 290, 412]
assuming a “unit information prior” and can be calculated independently of a specific
prior on the model parameters. This can be useful in cases were calculating the Bayes
factor is analytically intractable or specifying an informed prior is not possible.

Just like the Bayes factor (introduced in Section 3.3.1), and in contrast to the already
covered Frequentist measures, AIC and BIC both allow to establish a partial order on
models (possibly non-nested) competing to describe some collected data. Similarly, they
also do not provide a quality in an absolute sense but only establish a relative order on
the tested models. Technically, both measures derive a scalar measure which weighs the
power to model underlying data (i.e., the maximum likelihood of a model after optimizing
its parameters), against the complexity of the model (i.e., the number of parameters
to be optimized). The difference of AIC and BIC lies in the underlying theoretical
approaches resulting in differing methods to account for the inherent complexity of a
model. The question of which method to use is often debated, as AIC and BIC both
have their advantages and disadvantages [80, 130, 290, 352, 513]. For example, Weakliem
[513] argued that since the Bayes factor is sensitive to the choice of the prior, the “unit
information prior”, as assumed by BIC, is a too restrictive choice especially because it
may be even weaker than those chosen by practitioners [274, 290|. On the other hand,

Lewis et al. [317] also refer to Cox [126], Shapiro and Wilk [444], Vuong [498], and Williams [529] for
approaches to apply likelihood ratio tests to non-nested models.

1071 the case of likelihood ratio tests a suggested preference for one or the other model can be rejected
but not confirmed.
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AIC — in its original form — is considered to be not consistent in the sense that even
with an increasing sample size a probability remains to select the larger (more complex)
model even though a smaller model is true [290].

In this work, we heavily rely on HypTrails, which uses Bayes factors for model compari-
son. Thus, we generally do not need to employ the BIC measure which is an approximation
of Bayes factor. Also, on top of allowing to establish a relative order on the investigated
hypotheses, HypTrails utilizes the sensitivity of Bayes factor with regard to priors in order
to incorporate different levels of belief in the respective hypotheses. This enables a more
detailed investigation of hypotheses than when employing measures like AIC or BIC.

3.4. Exceptional model mining

For hypothesis comparison (Section 3.3.2), we already have to have certain theories,
hypotheses, or intuitions about the real world which we want to compare based on
observed data. However, we can also take the opposite approach using methods from
the field of pattern mining where the data is given and we aim at finding patterns which
describe sub-processes of the data in order to ultimately build new theories and hypotheses
about the real world.

In this section, we briefly introduce subgroup discovery and its generalized version
exceptional model mining. Afterwards we give a short overview on related work and
applications in the context of navigation behavior mining, covering, e.g., the closely
related field of sequential pattern mining.

3.4.1. From subgroup discovery to exceptional model mining

In literature, pattern discovery an integral part of the KDD (knowledge discovery in
databases) process which is described as “the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data” [168, chap. 1].
Specifically, the application of data-mining methods for pattern discovery and extraction
is the core of the KDD process [169]. Furthermore, “a particularly important subclass
of knowledge discovery tasks is the discovery of interesting subgroups in populations,
where interestingness is defined as distributional unusualness with respect to a certain
property of interest.” [532]. For a general definition of subgroup discovery, see Novak
et al. : “Given a dataset of individuals and a property of those individuals that we are
interested in, find dataset subgroups that are statistically 'most interesting’, for example,
are as large as possible and have the most unusual (distributional) characteristics with
respect to the property of interest.” |379]. In the traditional subgroup discovery task the
interestingness referred to in this statement is usually given by a Boolean expression over
a single attribute (e.g., “class = good”) and a subgroup is considered as interesting if
the expressions holds more (or less) often than expected [312]. In contrast, exceptional
model mining (EMM) [149, 307] is a framework that “allows for more complicated target
concepts” [149]. That is, a subgroup is considered interesting if the model fitted to the
covered data is somehow exceptional (e.g., model parameters are significantly different in
the subgroup than in the overall population). This allows to apply EMM to a variety
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of settings, including target concepts describing navigational processes. In particular,
in Chapter 5, we introduce an approach to employ EMM for finding subgroups with
exceptional transition behavior.

The exceptional model mining task. Closely following the definition by Lemmerich et
al. [312], an exceptional model mining task can formally be introduced as a tuple (D, II, C).
Where D is a dataset which is represented by a set of instances ¢ € I, II is the search
space of subgroups, i.e., the set of candidates to choose interesting subgroups from, and
C is a set of constraints defining the “interestingness” of a subgroup. The goal is to find a
set of subgroups R € II which satisfy the given constraints C, i.e., which are interesting.

Subgroups. A subgroup is given by a subgroup description, which is a Boolean function
p: D — {true, false}, and a subgroup cover c(p), which is the set of instances covered
by p, i.e., ¢(p) = {i € I | p(i) = true}. The search space II of candidate subgroups is
usually defined by a subgroup description language. Assuming that each data instance
1 € I is associated with a set of attributes A, the description language we focus on in
this work is the canonical choice of conjunctions of selection expressions over individual
describing attributes Ap € A. For nominal attributes these selection expressions are
attribute-value pairs and for numeric attributes they can be represented as intervals.
Hence, an example for a subgroup description p could be: gender = male A\ age < 18.
Due to combinatorial explosion, a large number of subgroups can be formed even from
comparatively few selection conditions. Consequently, a large amount of algorithms has
emerged to solve the task of subgroup discovery and exceptional model mining [308, 310].

Interestingness. With regard to the interestingness of a subgroup, the constraints C
usually formulate an interestingness measure ¢ : II — R and either require the resulting
subgroups to pass a threshold or constrain the result set R C II to contain the top
k subgroups with regard to q. The interestingness measure g is often based on a set
of model attributes Ay C A (also called target attributes) associated with each data
instance ¢ € I. For traditional subgroup discovery, in most cases, the target concept
is a Boolean expression over a single attribute (e.g., class = good) and a subgroup is
considered interesting if the expression holds more (or less) often than expected [see
e.g., 283]. In exceptional model mining on the other hand, interestingness is based on
more complex target concepts: Given a model class (such as correlation, a classification
model, or regression), interestingness can be expressed with regard to the fit of the
model parameters on the data instances defined by the corresponding subgroup cover. For
example, a subgroup could be considered interesting if the model parameters of the model
on the subgroup deviate significantly from the model parameters of the model fitted to
all data instances. Lemmerich et al. [312] consider the example of correlation (model
class) between two model attributes, i.e., the exam preparation time of each student and
their final score for the taken course. A finding of exceptional model mining could be:
“While overall there is a positive correlation between the exam preparation time and the
score (p = 0.3), the subgroup of males that are younger than 18 years show a negative
correlation (p = —0.1)”. Exceptional model mining has been implemented for a variety of
model classes including classification [307], regression [150], Bayesian networks [152], and
rank correlation [147].
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Summary. Given its explicit utilization of a description language to define subgroups,
subgroup discovery and exceptional model mining are descriptive methods [308]. That is,
they allow for finding interesting subgroups of data instances which are interpretable by
construction. Thus, by exploring and interpreting the resulting subgroups, exceptional
model mining allows to study and understand the observed data by inspecting its underly-
ing components. This may enable the practitioner to conceive new theories for explaining
the corresponding observations. In Chapter 5, we utilize this approach and formulate
an exceptional model mining class which employs the same Markov chain scenario as
HypTrails (cf. Section 3.3.2) in order to find interesting subgroups with regard to their
aggregate transition behavior.

3.4.2. Related work and applications

In the following, we cover work related to subgroup discovery and exceptional model
mining. In this context, we first give a brief overview of traditional application scenarios
and list several corresponding algorithms. Then, as this thesis focuses on paths and
traces resulting from human navigation behavior, we list some related work in the area of
trajectory and sequential pattern mining.

3.4.2.1. Algorithms and applications

Probably the most intensively studied variant of subgroup discovery and exceptional
model mining is frequent itemset mining introduced in the context of association rule
mining by Agrawal et al. [6]. In this context, Han et al. [229] give a broad overview on
frequent itemset mining, corresponding algorithms, extensions and applications. Some
prominent algorithms for efficiently discovering frequent itemsets are the Apriori algo-
rithm [7], Eclat [552], and the FP-growth algorithm [230]. These algorithms were applied
and extended many times. For example, the FP-growth algorithm was extended to
subgroup mining with categorical as well as numeric attributes [23, 26, 219|, as well
as the more general task of exceptional model mining [310]. For more information on
different algorithms for subgroup discovery and exceptional model mining, we refer to
Duivesteijn et al. [149], Herrera et al. [241|, and Lemmerich [308|. With regard to general
applications, Herrera et al. [241] list a vast set of scenarios ranging from the medical
domain, over bio-informatics, marketing, e-learning, and social data, to the field of spatial
subgroup discovery. With regard to geo-spatial data, which is highly relevant for our
work, researchers explored, for example, subgroups described by tags based on geo-tagged
images from the social photo-sharing platform Flickr [22, 309].

The applications mentioned so far can be mainly attributed to the field of subgroup
discovery. More complex approaches, which can be considered to be part of the exceptional
model mining area, include for example Atzmueller et al. [21] and Atzmueller and Mitzlaff
[25] who proposed and applied an extension of SD-Map to mining interesting community
structures in social networks |21, 25]. Further applications of the exceptional model
mining framework are listed by Duivesteijn et al. [149] including for example the analysis
of emotion on music data, or a study on exceptional subgroups with regard to the fauna
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of Europe |cf., 152|. Our own work, presented in Chapter 5, also falls into the category of
exceptional model mining and extends previous work by introducing a model class which
allows to discover subgroups with exceptional movement or navigation characteristics.

3.4.2.2. Sequences and trajectories

While subgroup discovery and exceptional model mining are concerned with subgroups of
instance based data, there is a related branch of pattern mining which focuses on sequence
and trajectory data. This branch can be divided into three categories: sequence mining,
web access pattern mining, and trajectory mining.

Sequential pattern mining. Sequential pattern mining was introduced by Agrawal
and Srikant [8] and is defined as follows: “Given a database of customer transactions
[each representing a set of items], the problem of mining sequential patterns is to find
the mazimal sequences among all sequences that have a certain user-specified minimum
support. Fach such mazimal sequence represents a sequential pattern.”. In Srikant and
Agrawal [465], the authors further generalized this notion to incorporate time constraints,
a sliding time window, and a user-defined taxonomy and developed a corresponding
sequential pattern mining algorithm [391]. As for subgroup discovery, sequential pattern
mining was applied to many different domains and often extended. See Fournier-Viger
et al. [175] and Mooney and Roddick [366| for recent overviews. Both list some prominent
algorithms!! | such as Apriori based variants [8], GSP [466], SPADE [551], SPAM [28], or
PrefixSpan [390], and name applications from a variety of fields such as bio-informatics
[248, 508|, e-learning [176, 568], text analysis [403], or even energy reduction in smart
homes [440].

Web access pattern mining. Sequential pattern mining approaches are also often
applied to web logs, i.e., traces of users left when browsing the web. For example Mooney
and Roddick and Fournier-Viger et al. mention [138, 391, 431, 467| which propose or list
different algorithms in this context. The main difference to general sequential pattern
mining is that each element in a sequence represents a web page visited by a user instead
of an itemset. This scenario was named web access pattern mining by Pei et al. [391]
and falls into the category of web usage mining'?, a term which El-Sayed et al. [431]
traced back to an article by Cooley et al. [123] from 1997. There exists a wide variety
of algorithms for web access pattern mining including a large array of WAP-tree based
algorithms [333, 391, 414, 478|, as well as some approaches also used for general sequential
pattern mining such as GSP or PrefixSpan [167]. There is also a wide variety of related
approaches (e.g., as summarized by Facca and Lanzi [167] and Gery and Haddad [198])
consisting of work from the area of association rule mining [178|, frequent sequence mining
(also called traversal pattern mining, [cf. 100, 101, 362]), or generalized frequent sequence
pattern mining [195, 339]. Application of web access pattern mining are personalization
of web content, pre-fetching and caching, usability, and e-commerce [167]. Also see Facca
and Lanzi [167] for a general overview on web usage mining.

1A wide variety of algorithms related to sequential pattern mining is implemented by the SPMF
library [174]. Also see: http://www.philippe-fournier-viger.com/spmf
12Sometimes web usage mining is also referred to as web log mining.
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Trajectory (pattern) mining. Besides web access pattern mining, sequential pattern
mining can also be applied to the geo-spatial domain. This scenario is referred to as
trajectory pattern mining [202]. The main difference to sequential and web access pattern
mining is that elements in a sequence are not represented as discrete items and events.
Instead these elements are defined in a continuous spatio-temporal context. Several
techniques were proposed to cope with this challenge. For example, Giannotti et al. [202]
and Kang and Yong [271] employed a two-step approach which discretizes the continuous
location space before applying sequential pattern mining approaches [e.g., 200|. However,
Giannotti et al. [202] also proposed a variant which dynamically computes regions of
interest during the mining process. In these approaches the temporal component also
plays an important role. For example the “T-patterns” in Giannotti et al. [202] are “a set of
individual trajectories that share the property of visiting the same sequence of places with
similar travel times.” Further work puts their focus on more fine-grained patterns [555],
semantic trajectory patterns [547|, or apply trajectory pattern discovery for mining travel
or life patterns [546, 560], predicting next places [364], or travel recommendation [564, 566].
Also, with regard to trajectory mining in general, Feng and Zhu [170] and Mazimpaka
and Timpf [349] give a broader overview and divide the field of trajectory pattern mining
into: sequential/frequent pattern mining as covered so far, where several objects are
moving independently of each other, periodic/repetitive pattern mining, where only a
single object is moving and the goal is to find recurring sequences, and gathering/group
pattern mining, where several objects move in unison. Tanuja and Govindarajulu [479]
and Zheng [561] also give further information on the more general topic of trajectory
mining.

Summary. Overall, all three variants of pattern mining on sequence data and trajectories
are concerned with finding interesting sequences or trajectories. In contrast, our work
is based on analyzing and finding user groups with interesting transition behavior (see
Chapters 4 and 5). Thus, while sequence mining, web access pattern mining, and trajectory
mining, can certainly help to formulate hypotheses about the underlying processes of
human movement behavior, e.g., by uncovering a set of frequent trajectories or interesting
sequences, they do not directly explain human movement on an aggregate level.

64



Part Il.

Methods

65






4. MixedTrails: Bayesian hypothesis
comparison on heterogeneous
sequential data

In this thesis, we aim to understand human navigation behavior in a geo-spatial context
as well as on the web. For this, the previously proposed HypTrails approach [453] (see
Section 3.3.2) provides a powerful tool which enables researchers and practitioners to
formulate and compare hypotheses about the underlying processes of navigation behavior.
However, HypTrails only allows to formulate homogeneous hypotheses while human
navigation behavior is inherently heterogeneous, as we have discussed in previous sections
(cf. Sections 2.1.5 and 2.2.5). That is, there may exist subsets of the observed phenomena
that exhibit strongly differing navigational characteristics (like tourists and locals who
have different preferences when navigating urban areas, cf. Section 7.4.3). To address
this issue, in this chapter, we propose MixedTrails, an extension of HypTrails, that allows
to formulate and compare intricate heterogeneous hypotheses (cf. Section 1.2.1). The
following content is based on our article on MixedTrails [41].

4.1. Introduction

Building upon Markov chains, the recently proposed HypTrails approach [453] (also see
Section 3.3.2) allows to compare hypotheses about sequential data, where hypotheses
represent beliefs in state transition probabilities that are derived from existing literature,
theory, previous experiments, or intuition with regard to the respective application domain.
This approach is used extensively to study human navigation behavior throughout this
thesis (cf. Part III). Figure 4.1 shows a concrete example on soccer data. It features
passes between players and shots at the goal (a). In this scenario, we are interested in
the strategy a team has used in a game, e.g., an offensive strategy, a defensive strategy,
or just random passing. For this purpose, we construct a Markov transition model using
the players and the goal as states, and the passes and shots as transitions between
these states (b). With HypTrails, we can then express and compare hypotheses (d-g)
about pass sequences by specifying different beliefs in transitions. For instance, a simple
hypothesis states that all transitions are equally likely (d). Other hypotheses may express
predominance of offensive passing (e), a left-flank strategy (f), or defensive play (g).
Given such hypotheses, HypTrails calculates the Bayesian evidence of the data under
each hypothesis based on which we can rank their relative plausibility (cf. Section 3.3.2).
Given the transition data (a), the approach ranks the uniform hypothesis (d) as the most
plausible one, as it resembles the overall data (b) the most.
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Figure 4.1.: An illustrating example for MixedTrails. In this figure, we show an illustrating
soccer example: We are interested in a team’s strategy in a specific game. We start with the
observed data on passes and shots (a). Using a simple Markov chain, we can model these as
transitions between states (b). The previously proposed HypTrails approach allows researchers
to compare homogeneous hypotheses about sequential data that express beliefs in transition
probabilities (d-g, strength of belief indicated by line width). Utilizing Bayesian inference, it then
determines the evidence of the data (b) under these hypotheses (d-g) and ranks the hypotheses
based on their plausibility; in this case, the uniform hypothesis (d) is the relatively most plausible
one. However, HypTrails is limited to homogeneous data, and does not allow for more fine-grained
hypotheses. Indeed, (c¢) reveals that splitting the data into halftimes allows for a significantly
better explanation of the data: A hypothesis that assumes offense (e) in the first halftime and
defense (g) in the second halftime appears to be a lot more plausible. MixedTrails enables the
comparison of such hypotheses on heterogeneous data.

68



4.2. The MixedTrails approach

Problem. Simple Markov chain models, and consequently also the HypTrails approach,
assume homogeneous sequence data. As such, they cannot take into account heterogeneity,
i.e., behavior stemming from several underlying processes. For instance, research on
mobility has found starkly differing user groups such as tourists and locals [312], and
there exist different phases of Web navigation with distinct patterns [519]. Further
examples are discussed in Sections 2.1.5 and 2.2.5. Also, reconsidering our soccer scenario
from Figure 4.1, we can observe that the play style substantially differs for the 1st and
2nd half of the game (dashed and solid arrows). As a consequence, a hypothesis that
assumes offensive play for the first halftime and defensive play for the second halftime (cf.
Figure 4.1e and Figure 4.1g) could provide a better explanation for our data. However
such hypotheses cannot be formulated and compared with existing approaches.

Objective. Thus, our goal in this section is to propose a method that lets researchers
intuitively formalize and compare hypotheses about heterogeneous sequence data, such as
“The team played according to the offense hypothesis in the first halftime, and according
to the defense hypothesis in the second halftime.” In this context, we aim at a general
and flexible approach: allowing to group transitions by a variety of features, like user
groups, state properties, or the set of antecedent transitions on the one hand, and enabling
users to formulate probabilistic group assignments as required in the context of smooth
behavioral shifts or uncertain classifiers on the other hand.

Approach. To this end, we introduce the Mized Trails approach, which covers all necessary
aspects to enable the comparison of hypotheses on heterogeneous sequence data: (i) We
suggest a method to formalize hypotheses as a combination of several belief matrices in
combination with probabilistic group memberships; (ii) We propose the Mixed Transition
Markov Chain (MTMC) model that allows to capture such hypotheses; (iii) We show how
to elicit priors for this model according to the given hypotheses; (iv) We discuss exact
and approximate inference for our model; (v) We provide guidance in the interpretation
of the result plots. Finally, we demonstrate the benefits of our approach with synthetic
and real world datasets.

Structure and references. MixedTrails is based on the concepts of Markov chains and
builds upon HypTrails. For the corresponding background please see Sections 3.2 and 3.3,
respectively. In Section 4.2, we first introduce MixedTrails including a formal problem
statement, the definition of the underlying MTMC model, the elicitation of hypotheses
as priors for MTMC, model inference, and an example illustrating how to interpret the
results. Afterwards, we demonstrate MixedTrails on synthetic data (Section 4.3). For
examples in the context of real-world applications, please see Sections 7.4.3 and 11.2.
Finally, we discuss alternative choices and limitations of our approach in Section 4.4 and
review related work in Section 4.5, before we conclude in Section 4.6.

4.2. The MixedTrails approach

In this section, we introduce our approach MixedTrails for comparing hypotheses about
heterogeneous sequence data using Bayesian model comparison. To this end, we first
elaborate on the specific problem setting (Section 4.2.1) and explain how hypotheses for
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heterogeneous sequence data are structured. Then, we introduce the Mixed Transition
Markov Chain (MTMC) model (Section 4.2.2) — an extension of the basic Markov chain
model — that allows to incorporate such heterogeneity. By formulating hypotheses as
elicited priors over the model parameters of this model (Section 4.2.3), we can utilize
Bayesian model comparison to make relative judgments about the plausibility of the given
hypotheses. Finally, we derive an approach for model inference (Section 4.2.4) and give
guidelines for interpreting the results (Section 4.2.5). For illustrative purposes, we will
refer to the soccer example visualized in Figure 4.1. For an overview of the methodological
background of MixedTrails, we refer to Section 3.2 for a general review on Markov
chain models and to Section 3.3.2 for an introduction on the HypTrails approach [453].
Furthermore, we point to Tables A.1 and B.1 for a list of the most important notations.

4.2.1. Problem statement

One of the goals of this thesis is to compare hypotheses about heterogeneous sequence
data. That is, we consider datasets of human navigation in the form of transition sets
D = {t1,...,t;,} between a set of states S = {s1,...,S,}. Such transition sets can be
derived from path datasets as introduced in Definition 1 by merging the transitions of
all paths.! Based on such data, we aim to compare and rate the plausibility of a set of
given hypotheses H = {Hy, Hy, ...} that express how the observed transitions may have
been generated. Extending HypTrails [453], we focus on transitions generated by several
independent processes.

Hypotheses. We describe a heterogeneous hypothesis H = (v, ¢») by two components:
group assignment probabilities v and group transition probabilities ¢. The group assign-
ment probabilities vy associate each transition ¢ € D in the dataset D with a probability
distribution ~4 which represents the probability for ¢ to belong to one of the groups
G ={g1,...,90} defined by the hypothesis. We write all group assignment probabilities
for a hypothesis as v = {v|t € D}, with v = {7,|g € G}. Here, 7, is the probability
that transition ¢ belongs to group g. Second, the group transition probabilities ¢ describe
the behavior of each group g € G by specifying respective transition probabilities between
states. Formally, all group transition probabilities according to a given hypotheses are
written as @ = (@1, ..., @o), With @y = (; j4]i, 8 € 5), where ¢; ;1 is the probability of
observing a transition to state s; given state s; within group g. Note that a homogeneous
hypothesis can be regarded as a special case of a heterogeneous one where all transitions
are assigned deterministically to one group.

Comparison. Given several hypotheses, MixedTrails — just like HypTrails — establishes
a partial order C by employing Bayes factors to compare their relative plausibility with
respect to a dataset D. This is done by converting each hypothesis H; into Bayesian priors
(see Section 4.2.3) of the generative model MTMC (see Section 4.2.2) and calculating the
marginal likelihood (i.e., Bayesian evidence).

Example. For illustration, again consider the soccer game example from Figure 4.1.
In the following, we specify two hypotheses for this scenario: a homogeneous one Hyom

Note that transitions ti,t; € D can have the same source and target states.
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Figure 4.2.: Hypotheses for heterogeneous sequence data. In MixedTrails, we formulate
hypotheses about heterogeneous sequence data. For example, in the soccer example, we define
two hypotheses: The homogeneous hypothesis Hyom (a) assumes that players just randomly pass
the ball around; the heterogeneous hypothesis Hyet (b) assumes an offensive strategy in the first
half of the game and a defensive strategy in the second half, cf. Figure 4.1. This is formalized
based on two components: group assignment probabilities -, i.e., probability distributions over
the set of respective groups for each transition, and a belief matrix of group transition probabilities
¢, for each group g. The soccer example features a special case, where group assignments are
deterministic, i.e., the probabilities are either 0 or 1.

and a heterogeneous one Hye;. The homogeneous hypothesis Hyom expresses the belief
that the players just kick around randomly. This can be formalized as a single matrix of
transition probabilities ¢uniform as shown in Figure 4.2a. Consequently, the corresponding
group assignment probabilities vone only assign transitions to a single group. As a more
fine-granular hypothesis using a heterogeneous structure, Hye; assumes that the soccer
team played by an offensive strategy in the first half of the game and by a defensive
strategy in the second half. For this, we need two separate transition probability matrices
(@oftense and Pdefense), one for each halftime. Then, we assign each transition to the group
(halftime) it belongs to via “halftimes- In this special case, transitions are assigned to
halftimes without uncertainty, thus, the probabilities used are either 0 or 1. The resulting
hypothesis is defined as Hpet = (Yhalftimes, (Poffense, Pdetense)) as visualized in Figure 4.2b.
Now, our approach MixedTrails determines the marginal likelihoods Pr(D|Hyem) and
Pr(D|Hypet) as a measure for the plausibility of the data under each hypothesis. Since
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Pr(D|Hypet) > Pr(D|Hpom), as demonstrated in Section 4.2.5, we assert that explaining
the data as a result of our heterogeneous hypothesis ( Hyet) is more plausible than assuming
the defined homogeneous process (Hpom)-

Flexibility. The soccer example from above features an important special case of our
approach, i.e., for the heterogeneous hypothesis, the assignment of transitions to groups is
determanistic Yg|; € {0,1}. However, our method also supports arbitrary group assignment
probabilities. This is be useful when hypotheses assume gradual change between generating
processes (e.g., the team continuously switches from offense to defense during a game),
when they suggest that the generating entity switches between different processes (e.g.,
when the team unpredictably switches between offensive and defensive play), or if there
is uncertain or insufficient information available (e.g., the time of some passes was not
accurately recorded).

Overall, the ability to specify group assignment probabilities allows to formulate very
intricate dependency structures and may serve as an interface to more complex, possibly
latent processes. In particular, group assignment probabilities and consequently the
transition probabilities associated with each transition can depend on any information
associated with a transition, specifically including background information (e.g., user
properties, length and duration of the sequence, state properties, or the time of the
day), information derived from previously as well as subsequently visited states, or even
information about other traces. For instance, this allows for hypotheses modeling higher
order Markovian processes, i.e., by defining m”® groups (where m is the number of states
and z is the order of the model) and setting the group assignment probabilities depending
on the state history of each transition. Some concrete examples on defining hypotheses
that take into account the overall sequence are featured in the experimental evaluation in
Section 4.3. Thus, even though there are some limitations and possible extensions (cf.
Section 4.4), all in all, MixedTrails provides a very flexible and easy to use framework to
model a very large and possibly complex set of hypotheses.

4.2.2. The Mixed Transition Markov Chain (MTMC) model

A standard Markov chain model is unable to capture heterogeneity in sequential data.
Therefore, we propose the Mized Transitions Markov Chain (MTMC) model as an exten-
sion for which we can formulate heterogeneous hypotheses as beliefs over its parameters.

MTMC assigns each transition ¢ € D in the transition dataset D to a group g € G =
{91, -+, 9o}, which is drawn from an individual categorical distribution with parameters
Y = (’ygl‘t, . ,'ygo|t), where ~,; denotes the probability of transition ¢ belonging to
group ¢g. Then, given a common state space, each group g € G is associated with its own
first-order Markov chain. Thus, for each source state s;, there is a categorical distribution
05,19 = (Ui1)g:---»0im|g) over all potential target states. The parameters 0; ;, are
distributed according to a (prior) Dirichlet distribution Dir(ex,,) With hyperparameters
Qg = (Qi1lgs - -+ » Qi m|g)- For shorter notation, we write the set of transition probabilities
over all states in a group as 8, = (65,4, - - -,0;,|,) and the set of transition probabilities
over all groups as 6 = (61, ...,0,). Similarly, we denote the set of all hyperparameters
for a single group as oy = (a4, - - -, A, |g); and the set of all hyperparameters over

72



4.2. The MixedTrails approach

all groups, i.e., all Dirichlet parameters, as o = (a1, . .., @,). Finally, we write the set
of all group assignment probabilities for all transitions in the dataset as v = (v¢) with
t € D. Given these definitions, considering only a single group (|G| = 1), MTMC is a
direct generalization of the a first-order Markov chain model.

Overall, the MTMC model is described by the following generative process that, given
a set of transitions D = {t1,...,ty}, generates for each transition t; € D, a destination
state dstj, for a known source state src, and known group assignment probabilities v, :

1. For each group g € G and each state s; € 5,
choose transition probabilities 6, ~ Dir(a,|y)-

2. For each transition fy:
a) Choose the group assignment zj, ~ Cat(7yy, ).
b) Choose the destination state dsty ~ Cat(0g., |z, )-

4.2.3. Eliciting priors from hypotheses

As mentioned in Section 4.2.1, MixedTrails converts hypotheses into Bayesian priors
for the MTMC model (see Section 4.2.2). This process is called elicitation as already
mentioned in the context of HypTrails (Section 3.3.2.3). However, compared to HypTrails,
MTMC requires a different set of parameters: the group assignment probabilities v and
the prior parameters ac. While the group assignment probabilities are directly specified
by a hypotheses H = (v, ¢), see Section 4.2.1, the parameters a of the Dirichlet prior
need to be elicited from the transition probabilities ¢ consisting of transition probability
matrices of several groups.

Deterministic Assignments. For deterministic group assignments, i.e., v, € {0, 1},
we determine the parameters ay of the Dirichlet distributions for each group g € G
separately similar to the approach described for HypTrails in Section 3.3.2.3. That is, for
each group g € G and each state s;, we set the Dirichlet parameters based on the core
distributions ¢, defined by the hypothesis and a given concentration factor x. Formally,
this is:

Qi jlg = K- @ijlg + 1. (4.1)

Here, the concentration factor x reflects the strength of belief in the respective hypothesis
(the higher the concentration factor the more accurate a hypothesis has to be to yield high
marginal likelihood values). Different settings for the concentration factor lead to different
priors. In our approach, we compare hypotheses along a range of different concentration
factors, i.e., strengths of belief in the respective hypothesis.

Consider the heterogeneous hypothesis Hpet = (’Yhalftimesa (¢offense> ¢defense)) from Fig'
ure 4.2b as an example. It features two groups (the first and second half of a soccer
game), and for each group g € {1st half, 2nd half} it defines specific beliefs in certain
transition probabilities, via the matrix entries ¢; j,. For each group, a matrix of prior
parameters oy is determined according to Equation (4.1). The offense hypothesis for the
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first half suggests transition probabilities @, |15t nair = (0,0,3/4,1/1,0) for the first row of
the transition probability matrix. Choosing an arbitrary concentration factor of k = 10,
we therefore obtain a Dirichlet prior with parameters o, |1 nait = (1,1,8.5,3.5,1).

Probabilistic Assignments. For probabilistic group assignments, i.e., 0 < yg; <1, we
need to adapt these basic priors to account for misassignments of groups. For example,
consider a scenario in which the dataset is divided into two groups that behave completely
different. Then, if some transitions cannot be assigned to groups with certainty, the model
will randomly associate some transitions which behave like the first group with the second
group, and vice versa. Thus, given uncertain group assignments, the behavior expected
from a set of transitions assigned to one group is actually a mixture of behavioral traits
of both groups. Consequently, we compute the number of pseudo-observations of the
Dirichlet priors for a group g as a mixture of hypotheses that is determined by the group
assignment probabilities of all transitions. For that purpose, for each transition tz, we
compute the probability that the model assigns ¢ to group g although it actually belongs
to group ¢’ (i.e., Vglts -’yg/|tk). This probability is then used as a weight for the respective
belief matrix ¢, . Formally:

1
Yigle =R\ 7 Do D0 el v Pl | | T L (4.2)
Y t,eD \geG

where 1/z; represents a normalization factor to ensure that the transition probabilities
from each state to the other states in the mixture sum up to 1. Note that for deterministic
group assignments, the formula simplifies to Equation (4.1).

4.2.4. Model Inference

Similar to HypTrails (Section 3.3.2.2), MixedTrails uses the notion of Bayes factors (see
Section 3.3.1) for comparing hypotheses. Thus, for deriving relative plausibilities, we use
the MTMC model to determine the evidence (marginal likelihood) for each heterogeneous
hypothesis given data (cf. Section 4.2.1). The marginal likelihood can be understood as
an average over the likelihood of all parameter settings weighted by their prior probability
(given by the hypothesis). This is formally expressed as an integral over all parameter
settings 0:

Pr(D|H) = /Pr(D|0,’y) Pr(0|a) d@ (4.3)
S—— ——
likelihood prior

In the remainder of this section, we elaborate on how to compute the marginal likeli-
hood for our MTMC model given some observed data and any hypothesis (homo- and
heterogeneous). We start by deriving an analytical solution. However, the resulting
formula is computationally intractable for non-trivial datasets. Thus, we show that for
the special case of hypotheses with deterministic group assignments, the calculation can
be substantially simplified. Additionally, for the general case, we explain how it can be
efficiently approximated by using a sampling approach.
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Analytical solution. When ignoring the group assignment probabilities v in Equa-
tion (4.3), the marginal likelihood of the MTMC model is equivalent to the homogeneous
Markov chain model for which an analytical solution exists [454]. However, in our setting,
we need to aggregate over all possible instantiations w € € of group assignments 2: Each
instantiation w maps each transition ¢ to a group w(t). The probability p,, of an instantia-
tion w is determined by the group assignment probabilities specified in the hypothesis, i.e.,
Pw = [L1en Yu(t)¢- For a fixed assignment to groups, we can then determine the overall
marginal likelihood as the product of marginal likelihoods of the individual groups. For
each group, the marginal likelihood can be calculated analytically as a combination of
beta functions over the hyperparameters for that group, and over the observed counts
in the data according to the fixed group assignment (see Singer et al. [454] for details).
Overall, we obtain the following formula (for an in-depth derivation see Appendix C):

Pr(DIH) =Y po [| H "”'g”f%g), (4.4)

weQ  geG s;e8 Cn

where Ty, |4 , stands for the vector of transitions counts from s; to all other states within
group ¢ for a given group assignment w.

Thus, the marginal likelihood of MTMC can be seen as a weighted average over the
marginal likelihood of all possible group assignments w. Unfortunately, this solution is
computationally intractable for real world datasets because the number of different group
assignments || grows exponentially with each additional transition t € D.

However, we can substantially decrease the computational costs for the important special
case of deterministic group assignments, i.e., where the group assignment probabilities are
either zero or one. Then, there is only one valid instantiation of the group assignments,
i.e., all but one weight p,, are zero, and the formula from Equation (4.4) simplifies to:

Pr(D|H) = HH 51'9+a5”9) (4.5)

geG si€8 (ets)g)

Thus, in this case, the marginal likelihood is equivalent to the product over the
marginal likelihoods across all groups. This can be calculated much more efficiently as the
computational complexity only linearly depends on the number of states and groups. The
formula also allows for leveraging existing parallelized approaches like SparkTrails [42].

Approximation. For the general, probabilistic case, calculating the marginal likelihood
of an MTMC model analytically with Equation (4.4) is computationally intractable.
Therefore, we show how we can efficiently approximate it by direct sampling. According
to the formula, the overall marginal likelihood is a weighted average over the marginal
likelihoods of all group assignments 2. To approximate this, we sample from the space of
all group assignments {2 according to their respective probability p, and calculate the
average marginal likelihood given these sampled group assignments Pr(D|a,w). Since for
individual transitions the process of choosing groups is independent from each other, a
single group assignment can be sampled by drawing the group zj, for each transition t; € D
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according to its group assignment distribution z; ~ Cat(~:,) (also see the generative
process in Section 4.2.2). The sampling procedure follows the intuition that factors with
small group assignment probabilities contribute less to the overall marginal likelihood.
Formally, we can compute the approximated marginal likelihood from a list of sampled
group assignments ' as:

Pr(D|H) ~ Z I1 H 51'9““' o) (4.6)

wEQ’ 9€G 5;68 (Qs,1q)

Pr(D|o,w)

In our experiments, we found that the results are stable for very small numbers of
iterations (less than 50) if the number of transitions is sufficiently high. This allows to
run our experiments in Section 4.3 in only a few hours on a regular desktop machine.

4.2.5. Visualizing and interpreting results

In this section, we describe our recommended way of performing experiments, visualizing
results, and interpreting them. To this end we use the soccer example from Figure 4.1
and investigate which strategies the soccer team has used. For instance, they may have
passed the ball randomly, or they may have played by a more intricate strategy. More
specifically, given the observed transitions from Figure 4.1 (a-c), we aim to compare the
plausibility of the different beliefs in transition probabilities from Figure 4.1 (d-g) utilizing
the marginal likelihood as elaborated in Section 4.2.4. In particular, we study the four
hypotheses uniform, offense, left-flank, and defense, as well as a data hypothesis. The
latter uses the actual observed transition probabilities as belief; thus it is only used for
comparison. We consider these beliefs for three group assignments:

(a) a homogeneous one (all transitions are in one group),
(b) a group assignment defined by the halftime of the passes/shots, and
(¢) a completely random group assignment.

The hypotheses are formulated analogously to the examples covered in Section 4.2.3. The
results are shown in Figure 4.3 (a~c). In each plot, the x-axis denotes increasing values of
the concentration factor s, which expresses an increasingly strong belief in the hypotheses.
The y-axis shows the marginal likelihood on a logarithmic scale; each line represents
one given hypothesis; solid lines refer to heterogeneous hypotheses and dashed lines to
homogeneous hypotheses. In general, higher values indicate more plausible hypotheses.

Relativity. An essential issue for interpreting the results from MixedTrails (or any
method using Bayes factors) is that results are relative. Which means that even if one
hypothesis outperforms all other hypotheses under consideration, this does not necessarily
imply that it models the data well. However, the goal of our approach is to compare
existing hypotheses from literature, domain experts, ideas, or intuition. The goal is not
to find models which perform well for prediction or similar tasks. Nevertheless, it may
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Figure 4.3.: Results for the illustrating example. This plot shows the MixedTrails results
for the illustrating soccer example, i.e., marginal likelihood values of different hypotheses on a
logarithmic scale for increasing concentration factors x (i.e., strengths of belief). We observe that
among the hypotheses without grouping, the uniform hypothesis performs best (a). However, far
more plausible explanations can be obtained by heterogeneous hypotheses that assume different
behavior in both halftimes (b). Finally, randomly splitting the data into arbitrary groups (A/B)
leads to less plausible explanations (c).

be desirable to validate the hypotheses with regard to their generative quality. For this,
we suggest the comparison with the uniform hypothesis (as we do in this example) or a
hypothesis with a flat (uninformed) prior (x = 0). The former assumes all transitions to
be equally likely, while the latter is equivalent to assuming that all transition probability
distributions are equally likely. Also, additional baselines can arise naturally in specific
application domains. For example, if analyzing navigation behavior between web pages,
a baseline could be that only transitions to linked pages are equally likely, and not to
all web pages in the dataset (cf. Dimitrov et al. [144]). We consider the relative order of
hypotheses as still viable and interesting if the hypotheses are better than such a baseline
hypothesis because they cover at least some aspects of the transition processes. At the
same time, if all hypotheses perform worse than the flat prior (k = 0), then the data
may be too complex for the chosen hypotheses, or the facilitated background data is not
sufficient to explain the underlying processes.

Significance. With regard to the significance of differences, we refer to Kass and Raftery’s
established interpretation table [273]|. The table states that conclusions should only be
drawn for sections of the marginal likelihood plots where the values are farther apart
than 10 (also see Section 3.3.1 for more information). In these cases, the change of the
posterior is to be interpreted as “decisive”. Consequently, in this thesis, we only draw
conclusions from such decisive results when applying MixedTrails.
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General properties of curves. Different values along the x-axis enable interpretation
beyond providing a relative order of hypotheses: For the left-hand side of the plots (values
of k close to zero) the influence of the transition probabilities of a hypothesis is very weak
and the marginal likelihood depends mostly on the group assignment. Thus, the higher
the marginal likelihood for k = 0, the more a heterogeneous hypothesis can benefit if it
models the transition probabilities in each group correctly.

For growing values of x, the Bayesian framework increasingly takes into account the
quality of the chosen transition probabilities for the corresponding group assignments.
At first it allows for a large tolerance, i.e., it integrates over variations of the specified
transition probabilities. Then, it consecutively decreases this tolerance, requiring that
the transition probabilities are very precise. For very high values of x, the marginal
likelihood converges towards the likelihood of the hypothesis. Consequently, the marginal
likelihood of heterogeneous hypotheses that assume identical transition behavior in all
groups converges towards their homogeneous counterparts (cf. wniform and 1st/2nd:
uniform in Figure 4.3b). This is because there is no difference between a homogeneous
and a heterogeneous hypothesis if the transition probabilities in each group describe the
same generative process.

Overall, the relation of hypotheses along increasing concentration factors gives intricate
information about the influence of the different components of the compared hypotheses.
For more information and an illustrating example on the interpretation of marginal
likelihood curves in the context of homogeneous hypotheses, also see Section 3.3.2.

Results on homogeneous hypotheses. Figure 4.3a shows results for the homogeneous
hypotheses. As expected, the data “hypothesis”’, which is inferred from the actual observed
transitions, achieves the highest marginal likelihood values for all k. Apart from that, the
uniform hypothesis explains the observed transitions best. The left-flank, the offense, and
the defense hypothesis exhibit strongly decreasing marginal likelihoods for an increasing
concentration factor, which indicates that these hypotheses are not supported by the
observed data. These results can also be obtained by applying HypTrails.

Results on heterogeneous hypotheses: the split. Our approach MixedTrails enables
us to also compare more fine-grained, heterogeneous hypotheses. Figure 4.3b features
four heterogeneous hypotheses (solid lines) that assign the data deterministically into two
groups, i.e., the first and the second halftime. Additionally, it shows the homogeneous data
hypothesis and the uniform hypothesis for comparison (dashed lines). For a concentration
factor kK = 0 the marginal likelihood depends only on the group assignment. Therefore,
hypotheses with the same group assignment probabilities start at the same marginal
likelihood level. Now, since our dataset indeed features different behavior in both
halftimes as the group assignment of our heterogeneous hypotheses suggests, their marginal
likelihood is higher compared to the homogeneous hypotheses at £ = 0. This indicates
how strongly the split divides transitions into differing processes, before delving deeper
into the plausibility of the expressed hypotheses with an increasing concentration factor .

Results on heterogeneous hypotheses: the curves. For higher values of x, the
marginal likelihoods diverge: The offense/defense hypothesis — in the first halftime
players behave as the offense belief suggests, and in the second halftime as the defense
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belief suggests (see Figure 4.2) — is fully supported by the observed data and thus yields
the highest values for all x. In comparison to the homogeneous hypotheses, this curve can
be interpreted as: “This hypothesis features a good group assignment and the transition
beliefs reflect the behavior in the observed data well.” If we assign the same belief in
transition probabilities to both halftimes, e.g., uniform probabilities, or the globally
observed transition probabilities (data), then smaller values are obtained, indicating that
these transition beliefs differ from the observed data. Additionally, for very large values
of K, the scores converge with the ones from the respective homogeneous hypothesis
because the corresponding heterogeneous hypothesis does not define different transition
probabilities for each group, which eventually nullifies the effect of the split. Finally, if
we use transition beliefs that are not actually supported by the data for both groups, e.g.,
a left-flank and right-flank preference in the two halftimes, then the marginal likelihood
curve rapidly declines. The respective curve can — in comparison to the other curves —
be interpreted as: “The hypothesis uses a good group assignment, but the transition beliefs
are not reflected in observed data.”

Results for a random split and summary. Figure 4.3c shows the same four hypothe-
ses, but assigns transitions to two arbitrary groups randomly (A/B). Since a random
group assignment increases the model complexity, but does not allow for a better model
of transition behavior, all hypotheses start with a lower value than the homogeneous
hypotheses on the left-hand side of the plot. For larger values of k, we can see the same
convergence behavior as before, but, overall, the marginal likelihoods of the heterogeneous
hypotheses are substantially lower and also rank lower than their homogeneous coun-
terparts. This is expected of hypotheses that introduce groups without explaining the
transition probabilities in each group significantly better than without groups. Overall,
these examples give a broad overview of possible MixedTrails results. More examples are
covered in Section 4.3.

4.3. Experiments

In this section, we demonstrate the applicability and benefits of our approach with
experiments on synthetic data. An open source implementation in Python? as well as the
datasets® are freely available. Conclusions from the experimental results drawn in the
text rely on results that are “decisive” with respect to the established interpretation table
given by Kass and Raftery [273], cf. Section 4.2.5. For an application of MixedTrails on
real-world data please see Section 7.4.3.

4.3.1. Deterministic group assignments

We consider three synthetic examples in order to showcase the properties of MixedTrails
in a controlled setting. For each example, we generate a transition dataset according
to a predefined mechanism and compare the plausibility of several homogeneous and

*http://dmir.org/mixedtrails
3The scripts for generating the synthetic data are included in the code.
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heterogeneous hypotheses. We show that those hypotheses that best capture the known
mechanism generating the synthetic data are indeed reported as the most plausible ones.

Datasets. The synthetic transition datasets are based on a random Barabasi-Albert
preferential attachment graph [35] with 100 nodes and 10 edges for each new node. Each
node has a random color ¢ € {red, blue} assigned with a probability of p. = 0.5. From
this graph, we derive three different transition datasets generated by 10,000 random
walkers with different characteristics. Just like each state, each walker also has a color
¢ € {red, blue} assigned randomly with p. = 0.5. Each walker chooses her first node
randomly and navigates through the network generating transitions depending on different
mechanisms which we describe next. The walkers stop after ten steps.Note that the
parameters in this study have been chosen arbitrarily. Other settings (e.g., altering the
number of walkers, the number of steps, or color probabilities) yield qualitatively similar
results. However, reducing the size of the datasets too much will eventually cause the
evidence for the correct hypotheses to be less prominent.

For the first dataset Dy, we consider link walkers that choose the next node uniformly
from all adjacent nodes, independent of the walker color. This corresponds to a transition
probability matrix O,k equal to the (row-wise) normalized adjacency matrix of the
underlying graph. For the second dataset Deojor, walkers of the “red” (“blue”, respectively)
group exclusively behave according to a probability matrix €eq (@piue) Which adapts Gk
such that transitions to red (blue) nodes are ten times more likely. The third dataset
Dinem is generated by “memory walkers” that dynamically choose their next state based
on their history, i.e., they use a different transition matrix dependent on the colors of the
states they have already visited (including the current state). In particular, if they have
visited more red than blue nodes, they use the matrix 6,¢q, and if they have visited more
blue than red nodes, they use the matrix @p,e. In case of a draw, they use the random
transition matrix @i,k.

Hypotheses. For the three datasets we construct corresponding hypotheses: first, the
homogeneous hypothesis Hink = (Yone, @link), which expresses the believe that there
are no groups (cf. vyone) and all transition are randomly chosen from the available links,
thus @uink = (Opink); secondly, the color-preference hypothesis Heolor = (Yeolors Peolor)
maps each transition to a group based on the color assigned to its walker and uses
the actual probability matrices for the transitions in the groups as belief matrices:
Dcolor = (Ored, Oplue); and thirdly, the memory hypothesis Hpem = (Ymem, Pmem) reflects
the generating mechanism in the third dataset: The transitions are assigned to groups
according to the majority of node colors already visited, and the transition belief matrix is
constructed as described in the generation of the third dataset: ¢mem = (Ored, Oblues Glink)-
To illustrate how our approach copes with groups that introduce unnecessary complexity,
we add a fourth hypothesis Hiink colored = (Yeolors (Blink, Orink)) that uses the grouping
into “red” and “blue” walkers, but assumes the same movement behavior for both groups,
i.e., equal transition likelihood for all links.

Results. Using MixedTrails, we compare these four hypotheses on all three datasets.
The results are visualized in Figure 4.4. For the link dataset Dy, (Figure 4.4a) we
find that the homogeneous hypothesis reflects the data very well and thus achieves the
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Figure 4.4.: Results for synthetic data with deterministic group assignments. We
compare homogeneous (Hji,k) and heterogeneous hypotheses (Hjink-coloreds Heolor and Hypem) o1
three synthetic datasets (Diink, Deolor and Dpem). We observe that the hypotheses that are
fitting the respective datasets work best, illustrating that the MixedTrails approach can identify
the correct ordering of the defined hypotheses.

highest marginal likelihood (ML) values for all concentration factors. The differences
for small concentration factors k (left-hand side of the plot) indicate that the other
group assignment probabilities used by the heterogeneous hypotheses do not introduce
valuable information. At first, both heterogeneous hypotheses show increasing ML for
increasing concentration factors k since the hypotheses carry information with regard to
the underlying transition processes, i.e., which network links are contained in the data.
With increasing concentration factors s, however, the emphasis on some specific links
(i.e., to red or to blue nodes), which is not reflected in the data, leads to a drop of the
ML. Furthermore, the memory hypothesis is closer to the data than the color hypothesis
as it covers transitions to red and blue nodes in more equal proportions.

Next, we consider the color dataset Dgojor (Figure 4.4b). The ordering of the hypotheses
on the left hand side of the plot indicates that the assignment of transition into groups (by
walker color) adds valid information to the corresponding hypotheses. However, while the
color preference hypothesis Hcoor models the transition behavior within the groups very
well, the grouped link hypothesis Hijk-colored does not. This explains the diverging ML
values for an increasing concentration factor. When comparing the simple link hypothesis
Hyink and the memory hypothesis Hyem, we observe that by introducing an incorrect
grouping, the memory hypothesis starts at a lower ML values than the link hypothesis
which does not introduce any groups. However, with increasing concentration factors, the
memory hypothesis starts to perform better, since, in contrast to the link hypothesis, it
does incorporate the red and blue transition behavior even if on differing (but somewhat
color-consistent) transition groupings. Thus, overall, our model allows to establish the
correct ordering of the hypotheses based on the processes used to generate the data.

Finally, we consider the memory dataset Dyen, (Figure 4.4c). Here we can observe that
— as expected — the memory hypothesis Hpen performs best for all values of k. The
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Figure 4.5.: Results for synthetic data with probabilistic group assignments. The
violet, mized hypothesis, using probabilistic group assignment probabilities, is the most plausible
one for increasing concentration factors as it directly models the processes underlying the data. The
violet, naive hypothesis illustrates the integral role of the mixing step, as skipping it significantly
reduces the performance of a hypothesis even though the underlying processes were correctly
understood. Further details are discussed in Section 4.3.2.

group assignment according to walker colors does not correlate with the actual groups in
the data and thus leads to lower ML value for low values of £ compared to a homogeneous
hypothesis. For high values of k, we see that the color hypothesis Hcolor does not model
the groups well compared to the hypotheses Hijni and Hiink-colored that assume equal
likelihood of all links.

Overall, MixedTrails yields results that are in line with the actual generation process
of the datasets. Our approach thus allows to derive information about the quality
of the group assignments as well as the transition behavior within the groups. The
strongly diverging characteristics of the different hypotheses illustrates the flexibility of
MixedTrails.

4.3.2. Probabilistic group assignments

So far, we have only considered deterministic group assignment probabilities in the
experiments, i.e., assigning transitions to a single group by only using binary probabilities:
Vglt € {0,1}. However, there is a wide variety of situations where it is useful to consider
probabilistic group assignments or fuzzy walkers, e.g., when considering smooth behavior
transitions between different times of a day, when transitions are assigned to groups by
an uncertain classifier, or when walkers randomly choose between different movement
patterns. Here, we explore probabilistic group assignments in a synthetic dataset. For a
real world example of an uncertain classifier, see Section 7.4.3.

Dataset. We use the same underlying network as in the previous example to construct
a dataset. However, instead of “red” and “blue” walkers, the sequences are now generated
by walkers with “mix colors”, called violet walkers, i.e., the walkers randomly choose to
walk according to the red 0,.q or to the blue 6y, transition probability matrix at each
step. For example, a violet walker w associated with a shade of violet s,, = 0.3 will choose
to be a red walker for 30%, and a blue walker for 70% of her transitions. We create a
dataset Dyiolet Of 10,000 walkers that each perform 10 transitions. We assign a shade
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of violet s,, to each walker w, which we draw from a Beta distribution s,, ~ Beta(1,1).
Before each transition of a walker, she randomly draws a color ¢ € {red, blue} according
to her shade of violet s,, using a Bernoulli distribution ¢ ~ Bernoulli(s,,). Then, she
uses the respective transition matrix 0..q or Oy dependent on the chosen color ¢ to
determine her next destination. As in the previous experiment, altering the parameters
of this study will not change the results of this study qualitatively. However, considering
the probabilistic nature of our approach, reducing the size of the datasets too much will
eventually result in random inconsistencies between runs and cause the evidence for the
correct hypothesis to be less prominent.

Hypotheses. As hypotheses, we define Hyink, Hiink-colored ad Hemory analogously to
Section 4.3.1. In addition, we introduce a hypothesis Hyiolet = (Yviolet, Pviolet) Specifically
tailored to violet walkers. Thus, we define the group dependent transition probabilities
as Qviolet = (Ored, Oplue). Now, violet walkers choose transition probability matrices
probabilistically dependent on their shade of violet. Using our MTMC scheme, this can
be modeled by setting the corresponding group assignment probabilities according to a
walker’s shade of violet s,,: Voltw = (Sw, 1 — 8y). That is, each transition t,, by walker w
has a probability of s, to be a red transition and a probability of 1 — s,, to be from the
blue transition probability matrix.

Results. The results are shown in Figure 4.5. The first observation is that the violet
hypothesis Hyiolet (mixed) works best for increasing concentration factors. Note that
we consider two variants of the violet hypothesis, one (violet, mized) elicited using the
mixing method proposed in Section 4.2.3 and one (violet, naive) elicited as if it was a
deterministic hypothesis. The results show that the mixing step is an integral part of
MixedTrails, as skipping it significantly reduces the performance of the heterogeneous
hypothesis even though the underlying processes were correctly understood.

As for the other hypotheses, the link hypothesis works best. This is because, generally,
a perfectly violet walker (s,, = 0.5) behaves exactly like a link walker. This also explains
the differing results for lower concentration factors: The grouping introduced by the violet
hypothesis injects complexity which is not splitting transitions in a manner that can easily
be explained. Thus, for low concentration factors, which imply a large uncertainty in the
hypothesis, this reduces the plausibility of the more complex hypothesis. However, with
growing concentration factors the better modeling of the transition probabilities justifies
the added complexity making the violet (mized) hypothesis the most plausible one.

With regard to the increased complexity, the colored (heterogeneous) link hypothesis
(link-colored) has the same disadvantage as the violet hypothesis; consequently, it is
inferior to the homogeneous link hypothesis. The memory hypothesis has the lowest
plausibility as it does not reflect the generative process of the dataset and introduces
three groups instead of just two.

Overall this example shows that, by using MixedTrails, heterogeneous data can be
modeled accurately and that the mixing procedure for eliciting probabilistic hypotheses
as introduced in Section 4.2.3 is an integral part of the approach.
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4.4. Discussion

With MixedTrails, we have proposed a powerful approach to formulate and compare
hypotheses about heterogeneous sequence data. In this section, we discuss some alternative
choices as well as possible misunderstandings and shortcomings of our method.

Comparison, prediction, and conception. MixedTrails is a method for hypothesis
comparison (Section 1.1). This is also sometimes called a deductive approach in certain
contexts (63, 240, 491|] — meaning that it requires a set of predefined hypotheses based
on ideas and theories from the application domain as input and compares them using
observed data. While the corresponding results also give an indication of the predictive
potential of hypotheses, we do not fit them to the data. For utilizing the data to learn
models that excel at prediction, a multitude of other, more specialized methods are
available [e.g., 172, 302, 545|. Note, that these methods usually do not yield directly
interpretable results. If they do [e.g., 172], they can be used for hypothesis conception
(Section 1.2.2). This is sometimes also called an inductive setting [63, 491] — taking the
opposite approach than MixedTrails: such methods use observations to extract patterns
or regularities from which new hypotheses or theories can be derived. We develop one of
such approaches in Chapter 5, i.e., SubTrails for discovering subgroups with exceptional
transition behavior. There are also other specialized approaches useful for conceiving
novel hypotheses, e.g., methods for segmentation, labeling, or clustering [64, 177, 404,
494, 504|. However, in this thesis, we focus on subgroup discovery due to its inherently
interpretable nature.

Extensions and alternative approaches. While MixedTrails provides a very flexible
and easy to understand framework for specifying and comparing hypotheses, there is
a variety of possible extensions and alternative approaches. For example, in this work,
we employ priors for transition probabilities, but specify group assignment probabilities
directly and fixed, which somewhat forces the user to be very specific with regard to
group assignments. In contrast, using a flat prior over group assignments, the user could
compare hypotheses that introduce groups of transition probabilities without having to
specify which transition belongs to which process. Also, MixedTrails can not directly
express dependencies between the groups of the transitions within a sequence as for
example possible in Markov switching processes such as the Hidden Markov model (cf.
for instance the concept of “stickiness” as considered by Fox et al. [177] and Wetzels et al.
[521]). That is, while we can construct hypotheses in a way such that group assignment
probabilities are derived by Hidden Markov structures, hidden state dependencies can
not be explicitly modeled. We could resolve this by using more complex models for
sequential data. This, however, would come at the cost of substantially increased efforts
for specifying model parameters in the hypotheses, especially considering the wide range
of incorporated background knowledge. Overall, MixedTrails tries to balance the amount
of parameters required to formulate a hypothesis against expressiveness. Nevertheless,
we acknowledge the potential of formulating more complex dependencies with the help
of more complex models, especially when considering the possibility of flat/uninformed
priors over certain parameter groups, but leave further studies to future work.

84



4.4. Discussion

MixedTrails vs. separate HypTrails comparisons. A simplistic alternative to our
approach could be to apply the original HypTrails method for homogeneous data separately
to the groups of a hypothesis. This, however, is limited to deterministic group assignments
and does not allow to compare hypotheses with different group assignments (or no group
assignments at all). In addition, MixedTrails provides the theoretical background on
how to aggregate results for the individual groups, i.e., by multiplying their marginal
likelihood.

Using different strengths of belief. We are using different strengths of belief (i.e.,
concentration factors k) in order to study different properties of our hypotheses. Cal-
culating the marginal likelihood for very large concentration factors x approximates
the likelihood of the model for fixed parameters, which is commonly used to compare
parameter settings in Frequentist statistics (e.g., via a likelihood ratio test). However,
by also investigating lower concentration factors, we obtain additional information on
the quality of the group assignments (cf. Section 4.2.5). Furthermore, our approach
enables the observation of the dynamics for growing concentration factors, which allows
us to judge whether a hypothesis covers predominant factors of the underlying processes
generating the sequential data. Thus, we believe that the analysis based on different
concentration factors can yield a more detailed comparison of hypotheses than other, one
dimensional measures, such as the model likelihood, which is included in our approach as
a special case and shown on the right-hand side of our result plots.

Nevertheless, we acknowledge that it may be useful to derive a single number by which
hypotheses can be compared. To achieve this we could either set a fixed k according to
some background information or, in a more Bayesian way, we could treat the concentration
parameter k as a free parameter and marginalize over it. This, however, would require
specifying a prior over this free parameter, which is inherently a difficult choice. As
a simple solution, we propose to compute the average marginal likelihood over a set
of k values. This is equivalent to a prior that regards these values as equally likely.
Overall, summarizing result curves into a single value in this way requires additional
task-dependent choices and comes with a loss of information with regard to the result on
the one hand, but allows for a more compact representation of results on the other hand.
Developing guidelines for choosing appropriate priors over x remains an open issue for
future work.

Efficiency and convergence. In the general case, the marginal likelihood of the MTMC
model has to be approximated. While the method from Section 4.2.4 has converged
quickly (< 50 iterations) so that we were able to calculate our results on regular consumer
hardware in a few hours, parallelizations along the lines of [42] may be useful for larger
datasets. We have also experimented with other methods for approximating the marginal
likelihood such as by Chib [109], but have found irregularities in the convergence behavior.
Further studies may address both, the parallelization of our method and exploring other
approximation schemes.

Multiple comparisons. Our approach enables the comparison of multiple hypotheses
against each other. In that direction, it can also be checked whether one of the hypotheses
performs better than a simple baseline hypothesis (such as the uniform hypothesis). If
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many hypotheses are tested in this way, then the multiple comparison problem should be
taken into account. That is, even if hypotheses are generated purely at random, some of
them would appear to be statistically significantly better than the baseline, cf. Benjamini
and Hochberg [54]. Although our approach is in principle affected by this problem, we see
this issue as non-crucial in our setting as (i) the main goal of our approach is not to show
whether one of our hypotheses can beat a baseline, but to compare hypotheses against
each other (pairwise) and (ii) we use only a comparatively small set of hand-elicited
hypotheses in our comparisons. Apart from that, there is intense discussion how multiple
comparisons are to be viewed from a Bayesian perspective, see for example [197, 216].
Nonetheless, exploring the challenges of multiple comparisons is an issue that we will
study more in-depth in future work.

4.5. Related work

MixedTrails is based on HypTrails introduced by Singer et al. [453] (also see Section 3.3.2).
HypTrails as well as our own approach, MixedTrails, build on the concept of Markov
chains. Corresponding related work on the application of Markov chains to human
navigation behavior is covered in Chapter 2 and Section 3.2.

To the best of our knowledge Markov chains and their extensions (as covered in Sec-
tion 3.2.2.1) have not been employed for the comparison of hypotheses so far. This
specifically includes variants of the mixed Markov model [461]. Additionally, the expres-
siveness of most these models is limited [e.g., 223, 405, 419, 461], i.e., some hypotheses
formulated using MixedTrails can not be expressed with these models.

Another set of Markov chain extensions related to our approach is the class of Markov
switching processes [177, 411], which model observations dependent on hidden Markovian
dependency structures. For more examples, please see Section 3.2.2.1. There are also
methods based on, or related to, these methods which are used for prediction, clustering
or segmentation [171, 181, 212, 347], including, e.g., Bayesian non-parametric methods
[177, 482] which adjust their complexity based on the data. However, such methods fit
models to the data, i.e., they learn model parameters. Sometimes these model parameters
can be used to find new hypotheses, but the corresponding process is usually tedious as
it often requires understanding possibly arbitrarily complicated probability distributions.
Also, while, e.g, Hidden Markov models were applied to compare streaky behavior with a
baseline model [521], to best of the authors knowledge, there are no general approaches
to apply Markov switching processes for formulating and comparing existing hypotheses
in the context of background data.

For a broad overview on work about model comparison as applied by MixedTrails, we
refer to Section 3.3.3 for a more detailed discussion. With regard to model comparison in
the context of Markov chains, statistical methods for comparing the fits of varying Markov
order were summarized in [454]. This includes likelihood ratio tests, information-theoretic
AIC, BIC, and DIC approaches, or the Bayes factor. MixedTrails focuses on comparing
fits by using marginal likelihoods and Bayes factors [474]; these have the advantage of
an automatic built-in Occam’s razor balancing the goodness of fit with complexity [273].
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For a more detailed discussion on alternative methods for model comparison, we refer to
Section 3.3.3. Additionally, instead of only using a flat Dirichlet prior (as often the case
in Bayes model comparison), we also utilized the sensitivity of the marginal likelihood on
the prior for comparing theory-induced hypotheses within the Bayesian framework With
this, we followed the HypTrails approach (cf. [453] and Section 3.3.2) which was inspired
by, e.g., [287, 423, 496]. To the authors’ knowledge, there exist no previous approaches
for the comparison of hypotheses about transition behavior that differentiate between
several groups contained in the data. Our contribution (in the form of MixedTrails) is in
line with a general trend towards Bayesian methods for data analysis [50, 288].

4.6. Conclusion

With MixedTrails, we introduced a Bayesian method for comparing hypotheses about
the underlying processes of heterogeneous sequence data. MixedTrails incorporates i) a
method for formulating heterogeneous hypotheses using ii) the Mized Transition Markov
Chain (MTMC) model, which enables specifying individual hypotheses for very flexible
subsets of transitions, i.e., with regard to certain user groups, state properties, or the
set of antecedent transitions. Furthermore, iii) we introduced methods for eliciting
hypotheses as parameters for this model, iv) showed how to calculate the marginal
likelihood, and v) provided some guidance on how result plots can be interpreted to
compare the corresponding hypotheses. The benefits of our approach were demonstrated
on synthetic datasets and will be further exemplified on real-world data throughout this
thesis (Sections 7.4.3 and 11.2). Overall, MixedTrails enables us to cope with one of the
major challenges of understanding human navigation behavior identified in Chapter 1,
i.e., formulating and comparing hypotheses incorporating the inherent heterogeneity of
human navigation.

In the future, we may explore our method in additional real-world applications, such as
investigating the movement of (groups of) Flickr users (beyond tourists and locals, cf.
Section 7.4.3), or studying groups of editors on Wikipedia. Furthermore, more complex
priors or hierarchical models may allow for more powerful ways of expressing hypotheses.
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5. SubTrails: Mining subgroups with
exceptional sequential behavior

As many studies have found, human navigation behavior is a heterogeneous process
(cf. Sections 2.1.5 and 2.2.5), e.g., Marchionini [340| find differences in navigation
behavior between younger and older users of a full-text electronic encyclopedia. While
the MixedTrails approach, proposed in Chapter 4, allows to formulate and compare
heterogeneous hypotheses about human navigation behavior, i.e., incorporating multiple
sub-processes to explain a given set of observations, it requires that interpretable subsets
of the data already exist for which navigational hypotheses can be formulated. Applying
exceptional model mining can alleviate this issue: In this chapter, we propose an approach
called SubTrails for mining descriptive subgroups (e.g., “male tourists from France”) with
exceptional transition behavior. This gives insights into the underlying heterogeneous
processes of human navigation, and thus supports the conception of novel hypotheses (cf.
Section 1.2.2). This chapter is based on our previously published article on SubTrails [312].

5.1. Introduction

Exceptional model mining [149, 307], as reviewed in Section 3.4, is a framework that
identifies patterns which contain unusual interactions between multiple target attributes.
In order to obtain operationalizable insights, it focuses on the detection of easy-to-
understand subgroups, i.e., it aims to find exceptional subgroups with descriptions that
are directly interpretable by domain experts.

Problem setting. While we have introduced a method for comparing hypotheses about
heterogeneous navigation data with our MixedTrails approach in Chapter 4, coming up
with a set of heterogeneous hypotheses to compare is not an easy task. In particular, either
subsets of the observed data (e.g., younger vs. older students) have to be selected by hand,
thus, resulting in a tedious process of finding and checking navigational characteristics
for interesting subsets. Or, if discovered in an unsupervised fashion (e.g., clustering), the
subsets are usually not straight forward to interpret because often descriptive attributes
are not part of the discovery process. Applying exceptional model mining to the observed
data can address this problem. In particular, it can be used to automatically identify
subgroups of people (such as “male tourists from France”) or sub-segments of time (such
as “10 to 11 p.m.") that exhibit unusual movement characteristics, e.g., tourists moving
between points-of-interest or people walking along well-lit streets at night. Similarly, this
method can discover subgroups of web-users with unusual navigation behavior. Also,
there are many application scenarios beyond navigation analysis, such as discovering
companies with unusual development over time Judge and Swanson [262].
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Approach. To enable the application of exceptional model mining to mining subgroups
with exceptional transition behavior, we introduce first-order Markov chains as a novel
model class for exceptional model mining. To apply exceptional model mining with
this model, we derive an interestingness measure that quantifies the exceptionality of a
subgroup’s transition model. It measures how much the distance between the Markov
transitions matrix of a subgroup and the respective matrix of the entire data deviates
from the distance of random dataset samples. This measure can be integrated into any
known search algorithm. We also show how an adaptation of our approach allows to
find subgroups specifically matching (or contradicting) given hypotheses about transition
behavior [cf. 44, 453, 503|. This enables the use of exceptional model mining for a new type
of studies, i.e., the detailed analysis of such hypotheses. We demonstrate the potential of
the proposed approach on several synthetic datasets. For an application on real-world
data featuring human navigation behavior, we refer to several of our case studies (cf.
Sections 7.4.2 and 11.3).

Structure and references. In this section, we heavily rely on Markov chains and the
framework of exceptional model mining. For background on both concepts please refer
to Sections 3.2 and 3.4, respectively. The main approach for mining subgroups with
exceptional transition behavior is introduced in Section 5.2. Section 5.3 presents experi-
ments and results on synthetic data. For applications on real-world data featuring human
navigation behavior we refer to several of our case studies (cf. Sections 7.4.2 and 11.3).
Finally, we discuss related work in Section 5.4, before we conclude in Section 5.5.

5.2. The SubTrails approach

Given a set of state sequences and additional information on the sequences or parts of
sequences, our main goal is to discover subgroups of transitions that induce exceptional
transition models. We formalize this as an exceptional model mining task.

For this purpose, we first derive a dataset D of transitions with model attributes Ay
and describing attributes Ap (see Section 5.2.1). These allow to form a large set of
candidate subgroup descriptions. For each corresponding candidate subgroup g, we then
determine the corresponding set of transitions and compute its transition count matrix T.
By comparing this matrix to a reference matrix Tp derived from the entire data D, we
can then calculate a score according to an interestingness measure g (see Section 5.2.2).
In order to detect the subgroups with the highest scores, standard exceptional model
mining search algorithms are utilized to explore the candidate space (see Section 5.2.3).
The automatically found subgroups then should be assessed by human experts (see
Section 5.2.4). In a variation of our approach, we do not use the transition count matrix
of the entire data Tp for comparison with the subgroup matrices T}, but instead employ
a matrix Ty that expresses a user-specified hypothesis. This allows for finding subgroups
that specifically match or contradict this hypothesis (see Section 5.2.5).
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Figure 5.1.: Subgroups of sequential behavior. Sequential data with background infor-
mation (a) is initially transformed to a transition dataset with transition model attributes Ay
and descriptive attributes Ap (b). To discover interesting subgroups, transition matrices for the
entire dataset (c¢) and for the candidate subgroups, e.g., Gender=f (d) or Weekday==Sat (e), are
computed and compared with each other.
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5.2.1. Data representation

We consider sequences of states and additional background information about them (cf.
Section 3.1). Since we will perform exceptional model mining on a transition level, we
split the given state sequences in order to construct a tabular dataset, in which each
instance corresponds to a single transition (similar to Section 4.2.1). For each instance,
the source and target state represent the values of the model attributes A,s from which
the model parameters, i.e., the transition matrix of the Markov chain model, are derived.
Each instance is also associated with a set of describing attributes Ap based on the given
background information.

Figure 5.1 (a-b) illustrates such a preparation process for a simple example. It shows
sequences of states (e.g., certain locations) that users have visited and some background
knowledge, i.e., some user information and the time of each visit (Figure 5.1a). This
information is integrated in a single data table (Figure 5.1b). It contains two columns
for the transition model attributes Ay, i.e., for the source and the target state of each
transition. Additional describing attributes Ap capture more information on these
transitions. This includes information specific to a single transition such as the departure
time at the source state but also information on the whole sequence that is projected to all
of its transitions, e.g., user data or the sequence length. Example subgroup descriptions
that can be expressed based on these attributes are "all transitions by female users”, "all
transitions on Saturdays”, or combinations such as "all transitions between 13:00h and
14:00h from users older than 30 years that visited at least three locations”. As different
types of information can be considered for the construction of the descriptive attributes,
the approach is very flexible.

5.2.2. Interestingness measure

We aim to find subgroups that are interesting with regard to their transition models. For
quantifying interestingness, we employ an interestingness measure q that assigns a score
to each candidate subgroup. The score is based on a comparison between the transition
count matrix of the subgroup T, and a reference transition count matrix Tp that is
derived from the overall dataset. In short, the interestingness measure that we propose
expresses how unusual the distance between the transition matriz of a subgroup and the
reference matrix is in comparison to transition matrices of random samples from the
overall dataset. For that purpose, we first define a distance measure on transition matrices.
Then, we show how this distance can be compared against transition matrices built from
random dataset samples. We describe those two steps in detail before discussing more
specific issues.

Distance measure and weighting. First, we compute the reference transition count
matrix Tp = (d; ;) for the overall dataset D as exemplified in Figure 5.1c. To evaluate
a subgroup g, all instances in the tabular dataset that match its subgroup description
are identified and a transition count matrix Ty, = (g; ;) is determined accordingly (see,
e.g., Figure 5.1d and Figure 5.1e). Then, a distance measure is employed to measure
the difference of transition probabilities in these matrices. After normalizing both
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matrices Tp and T, by row (yielding transition probability matrices Op = (dii/y; di ;)
and 0y = (91.3/%°;:;), cf., Section 3.2), each row i represents a conditional categorical
probability distribution for the next state given state s;. In literature, several methods
have been proposed to compare such distributions. Here, we focus on the total variation
distance Oy, also called statistical distance or (excluding the constant factor) Manhattan
distance. For one row, this is computed as the sum of absolute differences between the
normalized row entries, i.e., between transition probabilities:

509, D, 1) = §j|g” b

> Gi,j E d,j 5:1)

We then aggregate this value over all states (matrix rows). Since in our setting differences
in states with many observations in the subgroup should be more important than those
with less observations, we weight the rows with the number of transitions w; = > ;i 9ij
from the corresponding source state s; in the subgroup:

(5.2)
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The factor % can be omitted as it is constant across all subgroups. States that do not
occur in a subgroup are weighted with 0 and can be ignored in the computation even if
transition probabilities are formally not defined in this case.

As an example, consider the transition matrix for the entire example dataset (Figure 5.1c)
and the one for the subgroup Gender = f (Figure 5.1d). The weighted total variation for
this subgroup is computed as follows: we,(Gender = f,D) =2 (|3 =2+ |3 — 2|+ |3 —
INFHO-NA+T- (3 =3+ 1§ -3 +IT 3D =3

Of course, there are also alternatives to the total variation distance measure that we can

use, e.g., the Kullback-Leibler divergence dgi(g, D,i) = Z gij - log I g” or the Hellinger

distance Opey(g, D,1) = %\/Zj(\/gfj— Vi ;)?. However, for SubTralls, we focus on the
weighted total variation as it naturally extends existing approaches for interestingness
measures from classical pattern mining: it can be considered as an extension of the
multi-class weighted relative accuracy measure for multi-class subgroup discovery [2].
Additionally, it can also be interpreted as a special case of belief update in a Bayesian
approach as it has been proposed by Silberschatz and Tuzhilin [449] for traditional pattern
mining. We provide a proof for this in Appendix D. Despite this focus, we also conducted
a large set of experiments with all three distance measures in parallel with overall very
similar results.

Comparison with random samples. The measure wy, describes a weighted distance
between transition matrices. Yet, it is heavily influenced by the number of transitions
covered by a subgroup. For example, small subgroups might be over-penalized by small
weighting factors w;, while very large subgroups can be expected to reflect the distribution
of the overall dataset more precisely. Thus, using wy, directly as an interestingness
measure does not consistently allow for identifying subgroups that actually influence
transition behavior in presence of noise attributes, cf. Section 5.3.2.
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To account for these effects, we propose a sampling-based normalization procedure.
First, we compute the weighted distance wy,(g, D) of the subgroup g to the reference
matrix as described before. Then, we draw a set of » random sample transition datasets
R = {Ry,...,R,}, R; C D from the overall dataset D without replacement!, each
containing as many transitions as the evaluated subgroup g. Now, we compute the
weighted distances wy,(R;) for each of these samples, and build a distribution of false
discoveries (cf. Duivesteijn and Knobbe [151]) from the obtained scores. In particular, we
compute the mean value p(wg (R1, D), ..., ww(Ry, D)) and the sample standard deviation
o(wp(Ry, D), ... ,ww(Ry, D)) for the distances of the random samples. A subgroup is
considered as interesting if the distance of the subgroup strongly deviates from the
distances of the random samples. We quantify this by a (marginally adapted) z-score,
which we will use as the interestingness measure ¢ in our approach:

( D):wt”U(gﬂD)_/J'(wt”u(RlvD)a"'7wtv<R7‘7D)>
B9, o(Wi(R1, D), ... ww(Re, D)) + €

(5.3)

with € being a very small constant to avoid divisions by zero. Thus, ¢, (g, D) quantifies
how unusual the difference of the transition matrix of the subgroup g and the reference
matrix is compared to a random set of transitions drawn from the overall data that contains
the same number of transitions.

Stratification of samples. When drawing random samples equally across all states,
high scores g, can exclusively be caused by a peculiar distribution of source states in a
subgroup. However, this is not desirable when studying transition behavior. Consider, e.g.,
a dataset D, where transitions for all but one source state (matrix rows) are deterministic
(the transition probability is 1 for a single target state), and all source states have the same
number of observed transitions. Then, random transition samples R; will be drawn mostly
from the deterministic states and thus, will consistently have very small weighted distances
wiy(R;, D). Now, if any subgroup g only contains transitions from the non-deterministic
source state, a random deviation from the underlying transition probabilities is likely. Yet,
even if this deviation and thus the distance wy, (g, D) is small on an absolute scale, this
distance would still be higher than the ones of the random samples. As a consequence, g
appears as an exceptional subgroup with respect to its transition probabilities, even if
only the distribution of source states differs.

To address this issue, we adapt our sampling procedure: we do not use simple random
sampling, but instead apply stratified sampling w.r.t. the source states of the transitions.
Thus, we draw the random samples Ry,..., R, in such a way that for each source state
in the data, each random sample contains exactly as many transitions as the evaluated
subgroup. Note, that we do not stratify with respect to the target states since a different
distribution of these states signals different transition behavior.

Significance. To ensure that our findings are not only caused by random fluctuations
in the data, the z-score ¢, which we employ as our interestingness score can be used
as a test statistic for a z-test on statistical significance. Yet, this test requires a normal

!The rationale for using sampling without replacement is that the subgroup itself also cannot contain
multiple instances of the same transition.
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distribution of the weighted distances wy,(R;, D) obtained from the samples. Although
in many practical situations the distribution of the sampled distances is approzimately
normally distributed, this does not necessarily hold in all cases. We thus propose a
two-step approach to assess statistical significance of the results. First, we use a normality
test such as the Shapiro- Wilk-Test |444] on the set of distance scores obtained for the
sample set R. If the test does not reject the assumption of normality, a p-value can
be directly computed from the z-score. If normality is rejected, a substantially larger
set of random samples can be drawn to compute the empirical p-value of a specific
subgroup [204], i.e., the fraction of samples that show a more extreme distance score than
the subgroup. Although this is computationally too expensive to perform for every single
candidate subgroup, it can be used for confirming significance for the most interesting
subgroups in the result set.

For both methods one must consider the multiple comparison problem [243]: if many
different subgroups are investigated (as it is usually done in pattern mining), then some
candidates will pass standard significance tests with unadapted significance values by
pure chance. Therefore an appropriate correction such as Bonferroni correction [154] or
layered critical values [514] must be applied.

Estimate the effect of limited sample numbers. Determining the interestingness
score g, (g, D) requires to choose a number of random samples . While fewer samples
allow faster computation, results might get affected by random outliers in drawn samples.
To estimate the potential error in the score computation caused by the limited number of
samples, we employ a bootstrapping approach [159]: we perform additional sampling on
the weighted distances of the original samples S = {wi,(R1, D), . ..,ww(Ry, D)}. From
this set, we repeatedly draw (e.g., 10,000 times) “bootstrap replications”, i.e., we draw r
distance values by sampling with replacement from S and compute the subgroup score
Gty for each replication. The standard deviation of the replication scores provides an
approximation of the standard error compared to an infinitely large number of samples,
cf. [160]. In other words, we estimate how precise we compute the interestingness score gy,
with the chosen value of  compared to an infinite number of samples. If the calculated
standard error is high compared to the subgroup score, re-computation with a higher
number of samples is recommended.

5.2.3. Subgroup search

To detect interesting subgroups, we enumerate all candidate subgroups in the search space
in order to find the ones with the highest scores. For this task, a large variety of mining
algorithms has been proposed in the pattern mining literature featuring exhaustive as
well as heuristic search strategies, e.g., depth-first search [282], best-first search [515,
569], or beam-search [301, 493]. For this study, we do not focus on efficient algorithms
for exceptional model mining, but apply a depth-first mining algorithm as a standard
solution.

Candidate evaluation in our approach is computationally slightly more expensive than
for traditional subgroup discovery. That is, the runtime complexity for determining the
score of a single subgroup in our implementation is O(r - (N + 52)) for a dataset with N
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transitions, S different states, and a user chosen parameter of r samples: selecting the
set of instances from a subgroup as well as drawing a stratified sample requires O(N)
operations per subgroup and sample. The transition matrices for each of these transition
sets can also be built in linear time. The weighted distance for each of the r samples and
the subgroup can then be determined in O(S?) as a constant number of operations is
required for each of the S? matrix cells.

A typical problem in pattern mining is redundancy, i.e., the result set often contains
several similar subgroups. For example, if the subgroup male induces an exceptional
transition model and thus achieves a high score, then also the subgroup males older than
18 can be expected to feature a similarly unusual model and receive a high score—even
if age does not influence transition behavior at all. A simple, but effective approach to
reduce redundancy in the result set is to adapt a minimum improvement constraint [39]
as a filter criterion. To that end, we remove a subgroup from the result set if the result
also contains a generalization, i.e., a subgroup described by a subset of conditions, with a
similar (e.g., less than 10% difference) or a higher score.

5.2.4. Subgroup assessment

Automatic discovery algorithms with the proposed interestingness measure can detect
subgroups with exceptional transition models. Yet, to interpret the results, manual
inspection and assessment of the top findings is crucial as this allows users to identify
in what aspects the found "interesting" subgroups differ from the overall data. For that
purpose, a comparison between the subgroup transition matrix and the reference matrix
is required. Yet, manual comparison can be difficult for large matrices (state spaces).
Therefore, we recommend to assess subgroups with summarizing key statistics, such as
the number of transitions in a subgroup, the weighted distance wy, between subgroup and
reference transition matrices, the unweighted raw distance Ay, = >, 040(g, D, i), or the
distribution of source and target states. Additionally, ezemplification, e.g., by displaying
representative sequences, and visualizations are helpful tools for subgroup inspection. See
Sections 7.4.2 and 11.3 for two visualiation examples in the context of music listening
behavior and geo-spatial navigation, respectively.

5.2.5. User-defined hypotheses

In addition to comparing subgroups to the overall dataset, our approach can also detect
subgroups that specifically contradict or match a user-defined hypothesis. Following
the concepts of Singer et al. [453], we can express such a hypothesis as a belief matrix
Ty = (hi;), where higher values h; ; indicate a stronger belief in transitions from state s;
to state sj. An example of a hypothesis considering the example dataset of Figure 5.1
could be stated as: (? i ?) This hypothesis formalizes a belief that users from state A
(first row) will always go to state B, and users from the states B and C' will proceed to
any of the three states with equal probability.?

2Note that it is equivalent to formulate a transition count matrix Ty = (hs,;) or a transition probability
matrix g = (hi.i/s; h; ;) because the weighted total variation we, (cf., Section 5.2.2) normalizes the
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Now, given a belief matrix Ty of a hypothesis, the interestingness score of a subgroup
is computed analogously to the original case, but instead of using the transition matrix
derived from the overall dataset T as reference, we use the belief matrix Ty of the
hypothesis for the computation of the weighted distance wy,. A subgroup ¢ (exceptionally)
contradicts the hypothesis, if its transition matrix T, has a significantly larger distance
to the hypothesis matrix Ty than the stratified random samples of the dataset. To
find subgroups that match a hypothesis specifically well instead of contradicting it, the
inverted interestingness measure —gu,(g, D) can be used instead.

5.3. Experiments

Here, we demonstrate the potential of our approach with synthetic data. For empirical data
illustrating possible application scenarios and findings, please see Sections 7.4.2 and 11.3.
Using the synthetic data, we show that our approach is able to recover (combinations
of) conditions that determine the transition probabilities in presence of noise attributes.
For computing the interestingness measure, we used » = 1,000 random samples. Our
implementation (an extension of the VIKAMINE data mining environment [24]) and the
synthetic datasets are publicly available.?

5.3.1. Random transition matrices

We start with a synthetic dataset directly generated from two first-order Markov chain
transition matrices each representing a navigational sub-process. Transitions from both
matrices combined will make up the overall observed behavior. We aim to discover
subgroups with solely transitions from one or the other, pinpointing the corresponding
navigational sub-processes.

Experimental setup. We created two 5 x 5 matrices of transition probabilities by
inserting uniformly distributed random values in each cell and normalizing the matrices
row-wise. Then, for each generated instance, one of the matrices was chosen based on two
attributes, a ternary attribute A and a binary attribute B. If both attributes take their first
values, i.e., A = Al and B = B1, then transitions were generated from the first matrix,
otherwise from the second matrix. For each combination of values, we generated 10,000
transitions, resulting in 60,000 transitions overall. For each transition, we additionally
generated random values for 20 binary noise attributes, each with an individual random
probability for the value true. We employed our approach with a maximum search depth
of two selectors to find subgroups with different transition models compared to the overall
dataset. Our approach should then detect the subgroup A = A1 A B = B1 as the most
relevant one.

Results. The top-5 result subgroups are displayed in Table 5.1. It shows the number
of covered transitions (instances), the score of the interestingness measure ¢y, including

entries of the reference matrix Tp (i.e., Ty for this hypothesis based variation) and the weights w;
only depend on the values of the transition count matrix Ty of the subgroup g.
3http://florian.lemmerich.net/paper/subtrails.html
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Table 5.1.: Top subgroups for random transition matrix data. For each subgroup, we
show the number of instances covered by this subgroup, the interestingness score g, the weighted
total variation wy,, and the unweighted total variation Ay,.

Description # Inst. Gty (score) Wi Apy
A—=A1AB=B1 10,000 113.01 £2.74 5,783 1.54
A=Al 20,000 67.23 &+ 1.60 4,634 0.60
B = B1 30,000 45.52 +0.94 3,480 0.33
B = B2 30,000 44.69 + 1.08 3,480 0.51
A= A3 20,000 32.05 £ 0.77 2,378 0.53

the standard error of its computation estimated by bootstrapping (+), the weighted
total variation wyg, between the subgroup and the reference transition matrix, and its
unweighted counterpart Ay,. The result tables for the following experiments will be
structured analogously.

We observe that our approach successfully recovered the subgroup of transitions that
were generated from a different probability matrix, i.e., the subgroup (A = A1 A B = B1).
This subgroup receives the best score g, by a wide margin. The subgroup with the next
highest score (A = A1) is a generalization of this subgroup. Since it contains transitions
generated from both matrices in a different mixture, it also features indeed an unusual
transition model compared to the entire dataset. In the same way, the next subgroups all
feature the attributes A and B that actually influence the transition behavior, and none
of the noise attributes. These top subgroups all pass a Bonferroni-adjusted statistical
significance test as described in Section 5.2.2 with an empirical p-value of p < 10710,
while all subgroups containing only noise attributes (not among the shown top subgroups)
do not pass such a test with a critical value of o = 0.05.

5.3.2. Random walker

Our second demonstration example features a set of transitions generated by a random
walker in a network of colored nodes.

Experimental setup. First, we generated a scale-free network consisting of 1,000 nodes
(states) with a Barabasi-Albert model [35]. That is, starting with a small clique of
nodes, new nodes with degree 10 were inserted to the graph iteratively using preferential
attachment. Then, we assigned one of ten colors randomly to each node. On this network,
we generated 200, 000 sequences of random walks with five transitions each, resulting in
1,000, 000 transitions overall. For each sequence, we randomly assigned a walker type.
With a probability of 0.8, the walk was purely random, i.e., given the current node of the
walker, the next node was chosen with uniform probability among the neighbouring nodes.
Otherwise, the walk was homophile, i.e., transitions to nodes of the same color were twice
as likely. For each transition, the resulting dataset contains the source node, the target
node, the type of the respective walker (random or homophile), and additionally the
values for 20 binary noise attributes, which were assigned with an individual random
probability each.
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Table 5.2.: Top subgroups for random walker data. For each subgroup, we show the
number of instances covered by this subgroup, the interestingness score gy, the weighted total
variation wy,, and the unweighted total variation Ay,.

(a) Comparison to the overall dataset.

Description # Inst. Gty (score) Wi JAVS
Type = Homophile 200,915 35.67 £ 0.78 51,929 125.96
Type = Random 799,085 34.34 +£ 0.80 51,929 31.73
Noise9 = False 681,835 2.25 £0.06 51,358  36.27
Noise9 = True 318,165 2.23 £ 0.06 51,358  77.94
Noise2 = False 18,875 1.80 &+ 0.05 14,844 394.51

(b) Comparison to the homophile hypothesis, contradicting.

Description # Inst. iy (score) Wiy Ay
Type = Random 799,085 26.88+ 0.57 1,554,130 981.38
Noise4 — True 519,130  2.28 + 0.06 1,008,912 981.25
Noise2 = False 18,875  2.25 £ 0.06 37,057 987.49
Noisel = True 469,290 2.00 £ 0.05 912,032 981.26
Noisel9 = True 342,765  1.93 £+ 0.05 666,229 981.28

(c) Comparison to the homophile hypothesis, matching,.

Description # Inst. Gty (score) Wiy Ay,
Type = Homophile 200,915 12.10 £ 0.27 389,841 981.04
Noise4 = False 480,870 2.69 4+ 0.07 934,190 981.20
Noisel9 = False 657,235 2.27 £ 0.06 1,276,868 981.20
Noisel = False 530,710 1.99 £ 0.05 1,031,101 981.20
Noise0 = True 523,410 1.74 + 0.05 1,016,899 981.21

With this data, we performed three experiments. In the first, we searched for subgroups
with different transition models compared to the entire data. In the second and third
experiment, we explored the option of finding subgroups that contradict — respectively
match — a hypothesis. For that purpose, we elicited a hypothesis matrix Ty = (h; ;)
that expresses belief in walkers being homophile, i.e., transitions between nodes of the
same color are more likely. Towards that end, we set a matrix value h; ; to 1 if ¢ and j
belong to the same color and h; ; = 0 otherwise. Edges of the underlying network were
ignored for the hypothesis generation.

Results. Table 5.2 presents the results for the three experiments. As intended, exceptional
model mining identified the subgroups that influence the transition behavior as the top
subgroups for all three tasks. In the first experiment (see Table 5.3a), both subgroups
described by the Type attribute are top-ranked. For the second experiment (see Table 5.3b),
the subgroup Type=Random receives the highest score. By construction, this subgroup
should indeed expose the least homophile behavior since any subgroup described by noise
attributes contains transitions from homophile as well as non-homophile walkers. Its
complement subgroup Type=Homophile does not contradict our hypothesis and thus
does not appear in the top subgroups. By contrast and as expected, the subgroup
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Type=Homophile receives the highest score in the third experiment that searches for
subgroups matching the homophile hypothesis, while Type=Random is not returned as a
top result, cf. Table 5.3c. For all three experiments, the statistical significance of the top
subgroups described by the Type attribute was decisive (p < 10719), while the top findings
for the noise attributes were not significant at the Bonferroni-adjusted level o = 0.05 .

In additional experiments (no result tables shown), we employed the weighted distance
wyy directly as an interestingness measure. By doing so, we were not able to recover the
relevant subgroups as they were dominated by several random noise subgroups. This
shows the necessity of a comparison with random samples.

We also experimented extensively with different parameterizations (e.g., different walker
type probabilities or different numbers of node colors). Consistently, we were able to
identify the two subgroups Type=Random and Type=Homophile as the top subgroups.

5.4. Related work

Mining patterns in sequential data has a long history in data mining. However, large
parts of research have been dedicated to the tasks of finding frequent sub-sequences
efficiently, see for example |8, 366, 551]. Also see Section 3.4.2.2 for more information.
Other popular settings are sequence classification [315, 540] and sequence labeling [299].
However, unlike SubTrails, these methods do not aim to detect subgroups with unusual
transition behavior.

Our solution is based on exceptional model mining as introduced in Section 3.4. This
data mining task aims at finding descriptions of data subsets that show an unusual
statistical distribution of arbitrary target concepts. While many model classes have been
studied (e.g., classification [307] and regression models [150], or Bayesian networks [152]).
No models featuring sequential data have been explored for exceptional model mining so
far. Also, see Section 3.4.2 for a general overview of applications of subgroup discovery
and EMM.

We presented an approach to detect subgroups with exceptional transition models, i.e.,
subgroups that show unusual distributions of the target states in first-order Markov chain
models. The results from our approach may correlate with subgroups that could also be
obtained by multi-class subgroup discovery [2] that investigates the distribution of target
states. However, such a static analysis aims to achieve a different goal than our analysis of
behavior dynamics and will not capture all subgroups with exceptional transition models.
For example, in the random walker synthetic dataset (see Section 5.3.2) the distribution of
target states is approximately uniform for all subgroups by construction, also for the ones
that influence the transition behavior. As a consequence and in contrast to our method,
a static analysis could not recover the exceptional subgroups. Furthermore, the task of
finding subgroups that match or contradict a hypothesis of dynamic state transitions
(e.g., as demonstrated in the Flickr example, see Section 7.4.2) cannot be formulated as a
more traditional subgroup discovery task.

Our interestingness measure is inspired by previous methods. The weighted distance
measure can be considered as an adaptation of the multi-class weighted relative accuracy [2]
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or as a special case of the Bayesian belief update [449]. The randomization/sampling pro-
cesses to capture significant differences of subgroups also builds upon previous approaches.
In that direction, Gionis et al. [204] utilized swap randomization to construct alternative
datasets in order to ensure the statistical significance of data mining results. For subgroup
discovery, analyzing a distribution of false discoveries obtained by randomization was
proposed to assess subgroups and interestingness measures [151]. We extended these
methods to exceptional model mining with complex targets and used it directly in the
interestingness measure for the subgroup search.

For modeling sequential processes, Markov chains were used in various forms and in
a wide variety of applications ranging from user navigation [402, 454] to economical
settings and meteorological data [186] (also see Section 3.2.2). The mized Markov
model extension [405] of classical Markov chains features separate transition matrices
for “segments” of users, but these segments are not interpretable, i.e., have no explicit
descriptions. The work maybe closest to ours is [426], where the authors detected outliers of
user sessions with respect to their probability in a Markov-chain model; outliers were then
manually categorized into several interpretable groups. By contrast, our solution allows
to identify descriptions of groups that show unusual transition behavior automatically
from large sets of candidate subgroups.

Also, compared to HypTrails [453] (Section 3.3.2) and MixedTrails (Chapter 4) which
allow to compare hypotheses about Markov chain models, SubTrails — as an exceptional
model mining approach — not only enables us to find interpretable sub-processes in
human navigation behavior but also let’s us identify (sets of) conditions under which a
given hypothesis is matched or contradicted.

5.5. Conclusion

With SubTrails we proposed a pattern mining approach to exploring heterogeneous
aspects of human navigation behavior, supporting the process of hypotheses conception
(cf. Section 1.2.2). In particular, we introduced first-order Markov chains as a novel
model class for exceptional model mining in sequence data with background knowledge.
This enables a novel kind of analysis: it allows to detect interpretable subgroups that
exhibit exceptional transition behavior, i.e., induce different transition models compared
to the entire dataset. In addition, we presented a variation of the standard task that
compares subgroups against user-defined hypotheses, enabling a detailed analysis of given
hypotheses about transition behavior. We illustrated the potential of our approach by
applying it to several, advanced synthetic scenarios, i.e., SubTrails successfully recovered
exceptional transitions from artificial noise attributes. For insights gained by applying
SubTrails to real-world data please see Sections 7.4.2 and 11.3. Overall, SubTrails presents
a novel approach to gain an understanding of the underlying heterogeneous processes of
human navigation, and will ultimately enable to formulate and compare more intricate
hypotheses by incorporating the corresponding heterogeneous aspects. Thus, it addresses
one of the major challenges of analyzing heterogeneous navigation behavior as outlined
in Section 1.2, namely hypothesis conception. An example of this process can be seen in
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Chapter 7, where subgroups discovered by SubTrails are used as indicators to formulate
new heterogeneous hypotheses about photowalking behavior.

In the future, we aim to improve and extend our approach in several directions. First,
the proposed interestingness measure is currently based on individual transitions. As a
consequence, a few very long sequences (e.g., of very active users) can strongly influence
the results. To avoid dominance of such sequences, weighting of the transition instances
according to the overall activity could be applied in future extensions [cf. 22|. In addition,
we intend to investigate ways of speeding-up the mining process, e.g., by optimistic
estimate pruning [532] or by using advanced data structures [310], and aim to apply
sophisticated options to reduce redundancy, cf. [311, 318, 319]. Finally, we would like
to generalize the proposed model class to Markov chains of higher order or even more
advanced sequential models that potentially also take indirect state transitions into
account.
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Besides our methodological contributions in Chapters 4 and 5, we have developed several
tools to support the process of understanding of human navigation behavior. This ranges
from introducing an efficient implementation of relevant algorithms to developing several
data collection, analysis, and visualization systems. In particular, we present three analy-
sis tools: SparkTrails, VizTrails, and the EveryAware platform. SparkTrails (Section 6.1)
is a distributed implementation of the HypTrails approach [453] based on the MapRe-
duce paradigm [137] for comparing hypotheses about human navigation behavior (cf.,
Section 1.2.1). It allows to efficiently handle real-world scenarios with large state spaces
as often encountered when studying human navigation behavior. VizTrails (Section 6.2)
supports the process of hypothesis conception (cf. Section 1.2.2) by providing visualiza-
tions of geo-spatial navigation data. It facilitates deeper insights into the corresponding
trajectories by enabling interactive exploration of aggregated statistics and providing
geo-spatial context. The FveryAware system (Section 6.3) takes a more holistic approach
and provides a platform for collecting mobile sensor data in a participatory setting. That
is, it enables user-driven campaigns by collecting, analyzing and visualizing data such as
air quality or noise pollution in a geo-spatial context while explicitly supporting mobile,
personal devices, and subjective information, such as emotions or perceptions. Similar to
VizTrails the explorative nature of EveryAware aids the processes of hypothesis conception
(cf. Section 1.2.2). In the following, we present each of these systems in detail.

6.1. SparkTrails: A MapReduce implementation of
HypTrails for comparing hypotheses about human trails

This section presents a distributed and parallel implementation of HypTrails (cf. Sec-
tion 3.3.2) which enables the comparison of hypotheses about the underlying processes of
human navigation on large scale datasets and state spaces (cf., Section 1.2.1). Many of
our case studies in Part III rely on this approach. The content of this section follows our
previously published work on SparkTrails [42].

6.1.1. Introduction

As reviewed in Section 3.3.2, HypTrails [453] (cf., Section 3.3.2) is a Bayesian approach
for formulating and comparing hypotheses about the underlying processes of human
navigation behavior. However, especially recently, real-world datasets of geo-spatial as
well as online navigation are often very large. This requires approaches for analyzing such
data to operate efficiently. While a standard implementation of HypTrails is available, it
exposes performance issues when working with large-scale data.
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To address this, we take advantage of the structural properties of HypTrails and
propose a fast, scalable, and distributed implementation, called SparkTrails, based on the
MapReduce paradigm [137]. We implement our method on Apache Spark and evaluate
our approach on several large-scale datasets observing greatly improved performance and
the ability to scale freely. The implementation is publicly available and open source.!

In the following, we first examine the computational structure of HypTrails (Sec-
tion 6.1.2) and exploit our findings in the subsequent section in order to derive the
algorithmic details of our SparkTrails approach (Section 6.1.3). Afterwards, we evaluate
SparkTrails on several large-scale datasets in Section 6.1.4, and conclude in Section 6.1.5.
With regard to related work, we note that HypTrails [453] is a relatively novel method,
and thus, no other studies on its performance or corresponding parallelized or distributed
implementations exist so far.

6.1.2. Computational structure of HypTrails

As detailed in Section 3.3.2, HypTrails is a Bayesian approach for formulating and
comparing a set of hypotheses about the underlying processes of human navigation
behavior based on a set of observations. In this context, observations are represented
as a path dataset D which is converted to a transition count matrix T' = (n; ;) where
n; j corresponds to the transition count from state i to state j (cf. Definitions 1 and 3).
Given this data, hypotheses are compared based on their marginal likelihood P(D|H). In
particular, hypotheses are formulated as stochastic matrices ¢ = (¢; ;) with each entry
representing the transition probability from one state to the other. These stochastic
matrices are transformed into parameters of a Dirichlet distribution by employing a
concentration factor & (cf. Section 3.3.2.3). This results in a parameter matrix o = (o ;).
Now, let I" denote the gamma function, then the overall formula to calculate the marginal
likelihood Pr(D|H) of a hypothesis H with a given parameter matrix o is:?

F(Z am) H F(nw +0‘w)
PrOH) =11 o) D08y o) 6.1)

evidence Pr;(D|H) for an individual state ¢

This formula has to be calculated several times for each hypothesis depending on the
number of concentration factors used to construct the evidence curves HypTrails uses for
comparing hypotheses (cf. Figure 3.6 in Section 3.3.2.1). Note that the number of terms
in Equation (6.1) grows quadratically with an increasing number of states. Thus, real
world examples with large state spaces can — in addition to memory issues — lead to
very long runtimes.

"http://dmir.org/sparktrails
2See Section 3.3.2.2 for an explanation on why o can encode hypotheses.
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Figure 6.1.: SparkTrails concept. A schematic distributed calculation of HypTrails for three
states. ¢; are computational nodes where the rows of the observation matrix T' and the elicited
hypothesis matrix a are stored in a distributed fashion. After joining these two matrices by
row, each computation node calculates the evidence for one (or more) state. The resulting state
evidences are then merged into the overall evidence.

6.1.3. Distributed implementation

To be able to cope with large state spaces, for HypTrails, we implement SparkTrails where
we employ a MapReduce approach in order to distribute the workload as well as the
memory requirements of the HypTrails method across several computational nodes. In
this section we introduce the general idea and discuss several optimizations.

Main idea. The overall evidence calculated by HypTrails corresponds to the product
of the evidences of each individual state (cf. Equation 6.1). Thus, we calculate these
state evidences individually in a distributed fashion and merge the results into the overall
evidence.? The process, as illustrated in Figure 6.1, can be embedded into the MapReduce
paradigm as indicated by the distributed join as well as the map and reduce steps.

Row Sparsity. Observations are often sparse resulting in many states with no outgoing
transitions. For these states all n; ; in Pr;(D|H) are 0. Hence the components of
the nominator and the denominator cancel each other out yielding an evidence of 1.
Consequently these states can be left out of the distributed join (for T and a). This
greatly reduces the amount of data being shuffled between nodes.

Column Sparsity. We further exploit the observation sparsity by working with sparse
row vectors. For each state evidence calculation Pr;(D|H), this lets us reduce the number
of I" values to calculate by two times the number of states transitions n; ; which have not
been observed. This is because I'(n; j + ¢ ;) and I'(cy ;) cancel each other out if n; ; = 0.

Belief. Since HypTrails calculates evidence values for several concentration factors k, we
would need to run it for each corresponding parameter matrix « separately. However,
we can distribute the transition probability matrix instead of the parameter matrix and

3To avoid underflow, we actually calculate the logarithm of the marginal likelihood (evidence) so we can
sum values instead of multiplying them.
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Table 6.1.: Runtimes of SparkTrails. The data is based on real-worl data from Wikipedia
(wself, Wnw) and Flickr (f) as well as several synthetic examples (s1, s2, 7). In all cases we observe
a strongly reduced runtime for the distributed algorithm (spark). Also, runtimes scale almost
linearly when increasing the number of computation nodes (e).
Wself Wnw f S1 52 T
Python 9.0m 20.lm 1.4m - - -
Spark (e=4) 04m 1.7m 3.4m 25h 9.7h 18.3h
Spark (¢=8) 02m 09m 1.7m 1.2h 48h 89h
Spark (e=16) 0.lm 0.7m 12m 0.7h 2.7h 5.2h

move the elicitation process into the state evidence calculation.* This results in evidence
vectors, one entry for each x, avoiding expensive distributed joins.

More. Our implementation features additional optimizations, such as exploiting the
row sparsity property mentioned above for hypotheses as well, taking advantage of
their structural properties to avoid data shuffling, speeding up the distributed join via
pre-sorting or even consider coordinate-wise instead of row-wise calculations in case of
(unlikely) memory issues. See the code base for details.’

6.1.4. Experiments

For evaluation we calculate the evidence for 10 different concentration factors x on
synthetic as well as real-world data including Wikipedia navigation [537] and photo trails
in Los Angeles (cf., Chapter 7). We test our distributed implementation based on Apache
Spark and an optimized version of the original Python implementation. Table 6.1 lists
the results for the multiplication based hypothesis elicitation variant (cf. Sections 3.3.2
and 6.1.2).

SparkTrails runs on a YARN cluster with 6 worker nodes & 6 physical Intel Xeon cores,
128GB RAM and 5 executors. The Python code is not parallelized and uses a 2.1GHz
AMD Opteron CPU and 256GB RAM. For Python, the larger state spaces did not fit
into memory accounting for missing runtimes, and we have not included the time to load
data into memory (~20 minutes for wy,,). For SparkTrails this time is included.

For Wikipedia, observations are transitions between articles from the clickstream dataset
(Feb. 2015) by Wulczyn and Taraborelli [537]. The hypothesis wse¢ is based on the
observed transitions themselves representing the optimal hypothesis. The alternative
hypothesis wy,, is based on the link network® representing the hypothesis that people
choose from available links uniformly. While the overall state count is larger than 45
million, the observations and the network are very sparse resulting in small runtimes. For
photo trails (f), we consider transitions between geo-spatial grid-cells extracted from
photo sequences on Flickr; the hypothesis is based on distance. The small runtime for
Python can be explained by a small state count (~84k), sparse observations and a dense

41f we choose an elicitation process which can be applied for each state independently. See Section 3.3.2.3
for more details on elicitation approaches.

Phttp://dmir.org/sparktrails, accessed: December 2017

5Based on an XML dump of the English Wikipedia from the 04.03.2015.
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hypothesis. However, when considering the time to load data into memory (~13m),
SparkTrails is still a lot faster. To test our approach on dense data as well, we created a
full transition matrix and used it as both, observations and hypothesis, with 93k (s1) and
186k (s2) states. Finally, we test on a randomly sampled matrix with 0.01% of all entries
being set for 26 million states (r).

Additional information on the datasets as well as the different implementations can
be found online.” Overall, we observe that our approach, SparkTrails, can handle larger
datasets, yields dramatically smaller runtimes, and scales well with an increased number
of computational nodes.

6.1.5. Conclusion

We proposed a distributed implementation of HypTrails (see Section 3.3.2). Our ex-
periments showed that this implementation can handle large-scale data efficiently and
outperforms non-distributed methods by a large margin. Furthermore, our approach
scaled almost linearly with the number of computation nodes and thus, can handle very
large observation datasets and hypotheses. In Chapter 7, we use SparkTrails to calculate
the results for our study on human navigation based on Flickr data. Future work may
include efficient methods for creating large hypotheses or adapting our implementation
for possible extensions to HypTrails such as MixedTrails (cf. Chapter 4).

6.2. VizTrails: An information visualization tool for
exploring geographic movement trajectories

In this section, we introduce VizTrails, a tool for visualizing geo-spatial navigation behavior
in the context of various background information. This helps to better understand the
underlying processes and supports the procedure of conceiving hypotheses about human
navigation (cf. Section 1.2.2). The content of this section follows our previously published
work on VizTrails [45].

6.2.1. Introduction

As listed in Section 2.1, many practitioners and researchers have studied human movement
trajectories in cities through a variety of data sources including mobile phone data, GPS
and Wifi tracking, location-based social media platforms, online photo sharing sites, and
others. Our work in Chapter 7 extends this line of research by studying the underlying
processes of a set of trails derived from human navigation behavior in the form of urban
photo trails. To this end, we applied the HypTrails approach [453] (cf., Section 3.3.2)
which allows to formulate and compare different hypotheses about the production of such
trails. However, the process of formulating hypotheses is rather abstract because most
of the time generalized mathematical formulas need to be used to efficiently formulate
transition probabilities for each state combination (cf., Section 7.3).

"http://dmir.org/sparktrails
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To support the process of formulating hypotheses and to mitigate its abstract nature,
we have implemented a visualization tool called VizTrails®, which allows us to better
understand how geo-spatial navigational data (focusing on photo trails) materializes. It
further enables us to gain further insights on how the specific hypotheses we formulate
explain the corresponding paths. VizTrails achieves this by showing aggregated information
for grid cells (or any other spatial discretization, e.g., tracts) on a map featuring interactive
visualization of statistics, such as the number of users passing through cells, the in- and
out-degree from and to other cells, or the cells commonly visited next. Also, among other
features, VizTrails enables overlaying the map with content from arbitrary SPARQL
queries for relating the observed trajectory statistics with geo-spatial context. VizTrails
is designed for minimizing the required pre-processing steps.

Overall, VizTrails facilitates deeper insights into geo-spatial trajectory data by enabling
interactive exploration of aggregated statistics in the context of additional geo-spatial
context. Thus, it supports the process of formulating novel hypotheses about human
navigation behavior (cf., Section 1.2.2). In the following, we present VizTrails including an
overview of its architecture (Section 6.2.2), as well as several of its visualization features
(Section 6.2.3). We follow up with a brief overview on related work in Section 6.2.4, and
give a conclusion on Section 6.2.5.

6.2.2. Architecture

VizTrails is a web application based visualization system. It consists of two independent
layers: the REST-layer for serving statistics on human navigation data and the Ul-layer
for visualizing the provided data.

The REST-layer is connected to a database and provides endpoints for accessing data
points, user trajectories, grid cells, cell transitions, and more. It is built to be modular,
i.e., the underlying database is easily exchangeable. Thus, it can not only serve data from
relational databases like MySQL or PostgreSQL, but can also directly access data from
distributed NoSQL databases like HBase or Cassandra. This is especially useful when
large amounts of trajectory data are processed via parallel computation frameworks like
Hadoop or Spark which directly write to such distributed data storage systems.

The Ul-layer is browser-based. It pulls the data from the endpoints provided by the
REST-layer and visualizes it via HTML, JavaScript, and corresponding frameworks
like jQuery or OpenLayers. As a primary goal of VizTrails, the Ul-layer enables data
exploration in real-time. Since the listing of available grids and transitions is directly
coupled with the REST-layer, new grid and transition types are immediately available in
the user interface. This allows for a smooth workflow from generating and analyzing data
towards visualizing it.

Shttp://dmir.org/viztrails
9Map data copyrighted OpenStreetMap contributors and available from
https://www.openstreetmap.org.
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(b) Transitions

(a) Grid View (c) POIs

Figure 6.2.: VizTrails’ visualization components. In (a) we show the general grid view
visualizing different values for individual grid cells providing a general overview of some global
statistics. In this case, photo counts (e.g., P(C)) in Berlin are depicted. (b) demonstrates how
transitions from or to a cell are visualized when clicking on that particular cell (e.g., P(C2|C1)).
This allows to explore how people move from or to different places. Third, (¢) shows how entities
from DBpedia and their respective view counts on Wikipedia are visualized providing trajectories
with spatio-semantic context. These different visualization modes aid in exploring data about
human movement trajectories in an intuitive and explorative way.’
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6.2.3. Visualizations

We visualize geo-spatial trajectory data by discretizing an area defined by a bounding box
into grid cells (or any other spatial discretization, e.g., tracts) as depicted in Figure 6.2a.
Trajectories are then projected onto this grid. This allows us to visualize aggregated
statistics on the set of all trails that contain a location within this grid cell. These
include single cell statistics, cell transitions, and the respective geo-spatial context. In
the following, we describe these visualizations in the same order.

Cell frequencies. For an overview of the general spatial distribution of the recorded
data points, we color each grid cell according to the number of data points in that cell.
The color as well as the value intervals associated with each color can be freely chosen.
In addition to the number of data points in each cell, this visualization can be used to
visualize any other scalar valued statistics depending on the values the discretization
provides (in our case we also provide in- and out-degree for each cell). A dialog allows to
choose from a number of different grids and associated values and updates as new grids
are available in the database. Upon choosing a grid the map automatically pans and
zooms to the appropriate extent.

Markov chain transitions. Now, in order to explore trajectories, the Ul allows to
visualize first-order Markov chain transitions. When clicking on a cell, cell colors change
from a coloring based on overall statistics, to colors associated with the count of transitions
starting at a point within the clicked cell. We also show lines for the most probable trails
from (red) or to (blue) that cell. Thus, for example in the Flickr case, it can easily be
judged where people will go from the current cell in order to take their next picture.
Figure 6.2b shows the transitions from the “Brandenburg Gate” in Berlin. Here people
mostly move towards three destinations, namely the “Reichstag” building, the “Potsdamer
Platz” and the “Museum Island”. Note, that this feature not only allows to visualize actual
trajectories, but can also be used to contrast them with hypotheses about transitions as
formulated, e.g., by Becker et al. [44] (also see Chapter 7).

Spatio-semantic context. In [44] (also see Chapter 7), we have found that the processes
resulting in human trajectories are strongly connected with geo-spatial features such
as points of interest and their corresponding popularity in the social and semantic web.
In order to be able to directly correlate trajectories with such features, we provide the
possibility to query and visualize geo-spatial entities from DBpedia '© via SPARQL . In
addition, these entities can be weighted by the view counts of the respective Wikipedia
articles'? (if available), as shown in the example screenshot in Figure 6.2c.

Flickr. Although VizTrails can visualize arbitrary geo-spatial trails, our demonstration
example features urban photo trails from the Flickr platform. As an additional feature
for this dataset, we can also search for particular photo ids or show public photos that
have been taken within a bounding box drawn on the map, cf. Figure 6.2a.

Ohttp://dbpedia.org
"http://www.w3.org/TR/rdf - sparql-query/
2extracted from http://dumps.wikimedia.org/other
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6.2.4. Related work

Geo-spatial visualizations are widely acknowledged as a part of analysis processes in which
we can explore corresponding data, and build hypotheses [320]. In particular, Gahegan
et al. [187] and MacEachren et al. [335] argued that visualizations can be tightly integrated
into the knowledge discovery process for gaining insights into the underlying mechanics
of the observed geo-spatial data. There are many corresponding methods [15, 103, 320,
327|. This includes approaches for general activity patterns [297], traffic data [327], or
individual movement [268]. For temporal patterns, such as human navigation behavior,
spatio-temporal visualizations are of special interest [140, 298]. However, instead of
analyzing overall trajectories, in this thesis, we focus on aggregates of single transitions
(between location or places). Thus, tools that focus on spatial interactions or flows
can help to visualize the corresponding data. Guo et al. [222] and Chua et al. [118]
proposed respective visualization tools. However, the former does not show interactions
embedded in a map thus loosing the geo-spatial context, and the latter visualizes all
interactions between all entities at the same time (represented as arrows or arcs) which
causes cluttered visualizations where entities are dense. With VizTrails we opt for only
showing interactions when a specific entity is selected. This looses information on the
overall distribution of interactions, but allows for clean visualizations. Additionally, we
embed background information into our visualizations, similar to Slingsby et al. [459]
who visualized tags from platforms such as Flickr on maps. In contrast to Slingsby
et al., we add contextual information queried from DBpedia via SPARQL queries and
allow to show images taken by Flickr users for selected areas. While we do not claim to
replace any of the existing tools, we believe that combining the aforementioned features,
VizTrails is well tailored for our application scenario, i.e., gaining insights into geo-spatial
human navigation in order to formulate and explore novel hypotheses about its underlying
processes.

6.2.5. Conclusion

We introduced the interactive visualization tool called VizTrails that allows exploring
human movement and corresponding trails. To this end, we used a general discretization
approach to visualize a number of metrics as well as mutual transitions between areas of
interest. VizTrails also allows to set these trails into geo-spatial context using semantic
web data via SPARQL queries. Thus, it enables interactive exploration and facilitates
deeper insights into spatial trajectory data. In Chapter 7, we use VizTrails to explore
and visualize hypotheses about how people move through urban areas based on geo-
tagged photos from Flickr. Overall, VizTrails supports the process of conceiving and
exploring novel hypotheses as is one of the main challenges addressed by this thesis (cf.,
Section 1.2.2).
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6.3. EveryAware: A platform for collecting, analyzing and
visualizing data for mobile participatory sensing
campaigns

Human navigation behavior can be observed in many different application scenarios. This
also includes users navigating their environment in the context of participatory sensing
campaigns. In this section, we introduce the EveryAware platform which is built for
collecting, analyzing and visualizing data in this context. Its explorative nature aids the
processes of hypothesis conception (cf. Section 1.2.2). In Chapter 8 and Section 11.1,
we study data collected using this platform. For the introduction of EveryAware in the
following sections, we follow our previous published work (cf. Becker et al. [43]).

6.3.1. Introduction

In the context of the Internet of Things, many new applications have been designed
for mobile devices enabling people to record environmental as well as personal data by
making use of cheap, embedded and (specifically) mobile sensors, such as microphones,
cameras, accelerometers, gyroscopes as well as temperature, pressure, air quality, or heart
rate sensors. In combination with GPS receivers this tremendously growing number of
measurement possibilities enables — among other things — to study highly contextual
navigational processes of human behavior as we study in this thesis.

In particular, Cuff et al. suggested that there is a wide range of applications in which
people can be engaged in mobile sensing expecting a rapidly growing field and a multitude
of applications on an urban level [131]. This is in particular true for the field of citizen
science where volunteers contribute for the benefit of human knowledge and science [224].
Methods and techniques of flexibly acquiring and handling this data play a central role in
understanding human behavior and paving the way towards behavioral shifts within large
citizen populations.

Thus, the citizen science movement is especially supported by emerging web based
platforms making it easy to collectively upload content and share data. The data in this
context can be divided into two classes.

1. Objective data, which stems mainly from sensors and includes measurements like
sound intensity or gas concentration.

2. Subjective data, which comprises reactions and perceptions of humans faced with
particular environmental conditions.

Problem setting. While traditional Internet of Things approaches provide powerful
functionalities to support (objective) sensor data, they hardly support the collection
and augmentation with subjective information. However, beside collecting and handling
measurements, data also needs to be understood and interpreted which is not an easy
task. That is, objective data can change its interpretation entirely in different semantic
contexts. For example high noise levels at a rock concert are perceived as enjoyable while
a leaking water-tap can be considered as noise pollution. Therefore, on the way to the
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Internet of Everything, the next step is an Internet of Things and People [492] not only
working on objective data but incorporating people to add impressions, interpretations,
and other subjective context.

Approach and benefits. EveryAware aims at providing a platform that links objective
sensor data (such as air quality or noise pollution measurements) with subjective infor-
mation (such as impressions, interpretations, or perceptions). In particular, we propose a
highly efficient, generic data collection and processing framework featuring a powerful
extension mechanism to allow for semantic data augmentation. With this, we aim to
support data alignment and aggregation methods to create representative statistics and
visualizations, in order to support advanced knowledge discovery algorithms to mine
hidden patterns and relations [247|. Furthermore, EveryAware is built to incorporate
geo-spatial information, thus, it allows to collect data about the highly dynamic behavior
of users navigating their environment in the context of participatory sensing campaigns.
This allows to study human navigation behavior in a novel scenario and a range of
unexplored of contextual information. See Chapter 8 Section 11.1 for examples. The
EveryAware platform is live!® and the source code is available!.

Structure. In the next section (Section 6.3.2), we present the two main parts of the
EveryAware system, the conceptual and the implementation layer. In Section 6.3.3,
we present two reference applications of EveryAware, i.e., WideNoise and AirProbe, as
well as the currently developed module Gears. WideNoise and AirProbe are specialized
applications to collect, explore, and analyze noise pollution and air quality, respectively.
Gears on the other hand, while building on the same underlying architecture, is a module
that aims to provide a generic framework for sensor data collection and visualization. After
introducing these modules, we then critically discuss the current features of EveryAware
(Section 6.3.4) and review existing data collection services in the context of the Internet
of Things in Section 6.3.5. Finally we summarize our work including possible future
directions in Section 6.3.6. Also, see Chapter 8 and Section 11.1 for studies analyzing
human navigation behavior based on data collected using the EveryAware platform.

6.3.2. Architecture

On the conceptual level, the EveryAware platform has been designed to enable users
to collect, visualize, and share personal sensor measurements (mainly focusing on en-
vironmental factors) and at the same time augment the collected data with arbitrary
information explicitly supporting subjective context.

On the technical level, the data processing engine allows for the application of dedicated
data mining and knowledge discovery algorithms in order to fully exploit the synergies of
a central data storage and the wide variety of objective and subjective information. Our
platform was co-developed with the Ubicon framework [20] and extends it to provide the
functionality needed for our architecture.

In the following, we introduce both, the conceptual as well as the technical layer.

13http://cs.everyaware.eu, accessed: August 2017
“http://dmir.org/everyaware-opensource, accessed: August 2017
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Figure 6.3.: Conceptual design of the EveryAware system.

6.3.2.1. Conceptual layer

The conceptual layer defines the basic entities and features of the EveryAware system
revolving around the notion of data points (see Figure 6.3).

Data Points. Since EveryAware aims to support arbitrary applications and data types,
the concept of data points are held as general as possible. They can consist of air
quality data, noise pollution measurements, heartrate readings, or conceptually even
images, videos, or other binary data. Processing and interpreting the actual content of
data points (including subjective data) is handled later, i.e., by a data processor engine
(Section 6.3.2.2).

However, EveryAware is supposed to be able to handle arbitrary data (e.g., supporting
indexing, querying, basic analysis, etc.), even if no data processor module exists which
is able to interpret a particular type of data point. To achieve this, each data point is
augmented with a fixed set of description attributes in addition to the actual data. The
description attributes are divided into three categories:

o (1) Meta attributes are attributes which allow to keep track of data independent
information like received time, recording time, a device ID, or session IDs, etc.

e (2) Geo attributes emphasize the geo-spatial nature of personal sensor data (especially
environmental data) and make it possible to record the location of the sample being
taken including longitude and latitude as well as accuracy attributes, the location
provider or other relevant information.

e (3) Content attributes describe the content and its format. They help th