
Julius-Maximilians-Universität Würzburg

Lehrstuhl für Künstliche Intelligenz
und Angewandte Informatik

Constraint Based
Descriptive Pattern Mining

Datum:

13. Juli 2011

Diplomarbeit von

Martin Becker

Betreuer:

Prof. Dr. Andreas Hotho
Dr. Martin Atzmüller

Dipl. Inf. Florian Lemmerich









Julius-Maximilians-Universität Würzburg

Lehrstuhl für Künstliche Intelligenz
und Angewandte Informatik

Constraint Based
Descriptive Pattern Mining

Datum:

13. Juli 2011

Diplomarbeit von

Martin Becker

Betreuer:

Prof. Dr. Andreas Hotho
Dr. Martin Atzmüller

Dipl. Inf. Florian Lemmerich



Erklärung
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1
Introduction

Companies and institutions collect data not only for specific tasks but also
for possible later usage. Enabled by practically boundless storage capabili-
ties and communication technologies allowing sources from all over the world,
tremendous amounts of data are amassed. The collected data ranges from
transaction storages used by banks or retail organizations over customer pro-
files for insurance companies and friend graphs in social networks to unstruc-
tured data provided by internal documentation processes.

1.1 Motivation

[36, p. 3, par. 4] states that the mere variety, quantity and size of exist-
ing data collections renders manual data analysis a bottleneck. The field of
Knowledge Discovery in Databases (KDD) rises to this challenge. Its com-
munity originated in the early 1990s (cf. [36, p. 2, par. 3]). In [25, p. 6,
par 3] Fayyad et al. define KDD as “the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in
data”. They also define Data Mining as part of the KDD process (see [25, p.
10]), which is responsible for “searching patterns of interest in a particular
representational form or a set of such representations: classification rules,
trees, regression, clustering, and so forth” (cf. [25, p. 10, par. 2]).

It is task specific which patterns found in a dataset are of interest. “Often,
users have a good sense of which ”direction“ of mining may lead to interesting
patterns and the ”form“ of the patterns or rules they would like to find” (cf.
[32, p. 265-6]). One way to push such “intuition” and “expectations” into
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2 CHAPTER 1. Introduction

the data mining process is by specifying constraints of varying types, for
instance knowledge type, data, dimension, interestingness or rule constraints
as listed by [32, p. 266, par. 2]. As these constraints confine the search space
they potentially also improve the performance of the data mining process.

One particular, intensively studied constraint is the frequency constraint.
“Frequent patterns are patterns (such as itemsets, subsequences, or sub-
structures) that appear in a data set frequently” and mining such frequent
patterns “has become an important data mining task and a focused theme
in data mining research” (cf. [32, p. 227, par. 1]). Thus many efficient al-
gorithms have emerged. One of the first efficient algorithms to find frequent
itemsets in transaction databases was the Apriori algorithm introduced by
[3]. Driven by the need for better performance and in the process of re-
ducing costs introduced by candidate generation and database scans, the
FP-Growth algorithm, as stated by [33], was developed (see [32, p. 243, par.
1-2]). Derivations of the FP-Growth algorithm were also applied to other
related pattern mining tasks like subgroup mining (cf. [56, 7]) and mining
descriptive community patterns (cf. [6]), e.g. in social networks.

Arguably these data mining tasks share a common structure. Addition-
ally the possibility to apply derivation of the FP-Growth algorithm to solve
them raises the question, if it is possible to specify a generic framework that
covers their definition. An algorithm that solves the abstract problem stated
by such a framework will be applicable to any of its instantiations seamlessly.

1.2 Scope of the Work

The focus of this work is to develop a pattern mining framework allowing
to state the abstract problem of pattern mining which covers the definition
of data mining tasks like frequent pattern mining (see [4]), subgroup min-
ing (see [56, 7]) and mining descriptive community patterns (see [6]). Several
optimizations and search strategies originating from these more specific prob-
lem settings are to be utilized as building blocks for deducing an algorithm
efficiently solving the corresponding pattern mining class.

As stated above constraints are a basic utility to define which patterns
of the search space are interesting. Thus the derived algorithm needs to
support a variety of constraints allowing to specify different problem instan-
tiations. Several possibilities of pruning the search space based on the prop-
erties of constraints are to be reviewed and incorporated into the algorithm.
Especially anti-monotone and monotone constraints are important and well
known constraint classes that allow efficient search space reduction. To fur-
ther improve the efficiency of the search, specialized compact and fast data
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structures will be revisited focusing on the FP-Tree from the FP-Growth
algorithm.

1.3 Structure

Chapter 2 will define a framework making it possible to define descriptive
pattern mining, a pattern mining class based on item-based patterns, which
allows to formalize different pattern mining settings by defining constraints.
It will furthermore introduce the notion of valuation bases, which are the core
principle to derive an efficient algorithm to solve descriptive pattern mining.

Chapter 3 is to review different generally known search strategies and
apply them to descriptive pattern mining in order to be able to formulate
the exploitation of constraint properties for search space reduction abiding
by the framework. It also revisits interchangeable data structures to be used
by the search including the FP-Tree and bitset representation of datasets.

Chapter 4 formulates several data mining tasks like frequent pattern min-
ing (see [4]), subgroup mining (see [56, 7]) and mining descriptive community
patterns (see [6]) in the context of the framework allowing to apply the con-
cepts reviewed in Chapter 3 and also lists other constraints common in the
pattern mining community.

Chapter 5 combines the ideas from Chapter 3 to derive an algorithm
solving the abstract problem of descriptive pattern mining and discusses its
implementation.

Chapter 6 applies the algorithm from Chapter 5 to the descriptive pattern
mining instances stated in Chapter 4 to illustrate and confirm the effects of
the search strategy and its optimizations from Chapter 3 and to show the
versatility of algorithms created to solve the generic problem of descriptive
pattern mining defined using valuation bases.

Chapter 7 will give a summary of what has been achieved as well as
perspectives for future work.
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2
Basics

In data analysis typically a population X is studied [36, p. 33]. A population
can contain a large amount of objects or individuals, so that usually only
samples of the population are available. The data collected for each individual
is often defined as values according to a fixed set of attributes [26, p. 579].
A more generic approach is to associate an individual with a data instance
from an arbitrary data domain D according to field of interest. Such data
instances can correspond to a wide range of actual data: the value of one
or several variables, pictures, graphs, functions or any combination of the
former. An example for a population is the set of all humans beings. If the
field of interest is their height at a certain age, a data instance associated
with an individual corresponds to a non-negative value being drawn from
the the data domain D = R

+. The data domain could also be defined as
natural numbers D = N, if only rough measurements are of interest. Note
that based on the field of interest individuals cannot be distinguished if they
are associated with the same data instance. Now, it is hardly possible to
record the height of every human being. Nevertheless the population can be
sampled. The data instances of a subset of individuals are recorded. The
records of measured individuals are collected in a data record set. Each data
record corresponds to an individual associated with a data instance.

Figure 2.1 shows an example of a data record set, where the height of
human beings at a certain age is recorded. The individuals are identified by
natural numbers. Definition 2.1 formally introduces the notion of data record
sets. Example 2.1 formulates the data record set from Table 2.1 according to
that definition.

5
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individual height in inches
11 28
1 30
17 40
111 52
33 28
34 28

Table 2.1: A data record set listing the height of human beings at a certain
age.

Note 2.1 (Unique Identifiers and Natural Order).
How individuals from a population X are identified in a data record set is
arbitrary. In Table 2.1 the identifiers are chosen to be natural numbers,
which can be interpreted to induce a natural order on individuals. Yet this
order does not carry any meaning or information (e.g. order of recording).
Instead an order can be introduced on the data level (for example by also
recording the date of each recording). Any information carried by identifiers
can be disregarded without loss of generality, because the identifiers and any
possibly associated information can be pushed into the data domain. Thus all
information is actually carried by a multiset of data instances if considering
a single data record set independently of others. The reason for defining them
otherwise is highlighted by Note 2.2.

Definition 2.1 (Data Record Set).
A data record set S is a tuple

S = (R, δ : X → D)

• D is called data domain and is an arbitrary set. An element d ∈ D

is called a data instance.

• X is called population and is also an arbitrary set. An element x ∈ X

is called an individual.

• δ : X → D is called data recorder, associating each individual with a
data instance.

• R ⊆ X is a subset of the population X and is called the record domain

of S.

• A tuple (r, δ(r)), where r ∈ R and δ(r) ∈ D, is called a data record.
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A data recorder δ : X → D defines a set of data record sets

Ωδ = {(R, δ) | R ⊆ X}

Set operations are defined on those data record sets with the same data
recorder by projection onto their record domains (see example 2.2).

Definition 2.2 (Set Declarations).

• Let ∆D denote the set of all data recorders on D.

• Let ΩD =
⋃

δ∈∆D

Ωδ denote the set of all data record sets recorded by all

possible data recorders on D.

Example 2.1 (Data Record Set).
Based on Table 2.1 a data record set Stable = (R, δ : X → D) can be defined.
To identify individuals the natural numbers are chosen X = N. The record
domain R ⊆ X is R = {11, 1, 17, 11, 33, 34}. The data domain D represents
all possible heights at a certain age. Assuming no decimal values, the domain
of heights can be set to D = N. Thus the data recorder δ can be defined as
follows:

δ : X → D

i 7→







































28, if i ∈ {11, 33, 34}
30, if i = 1

40, if i = 17

52, if i = 111

66, if i = 12

0, otherwise

The fact that δ(12) = 66, and that the data record (12, 66) does not appear
as an entry in Table 2.1, illustrates that data recorders are generally not
bound to a specific data record set. They rather define a whole set of data
record sets Ωδ (see Definition 2.1) and S is merely one instance S ∈ Ωδ of
the possibly recordable data record sets Ωδ.

Example 2.2 (Set Operations on Data Record Sets).
A few examples on set operations on data record sets are listed below. Let
S1 = (R1, δ) and S2 = (R2, δ) be data record sets with the same data recorder
δ.
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• S1 ⊆ S2 :⇔ R1 ⊆ R2

• S1 ∩ S2 := (R1 ∩ R2, δ)

• 2S1 := { (R′, δ1) | R′ ∈ 2R1}

• |S1| := |R1|

• r ∈ S1 :⇔ r ∈ R1

Note 2.2 (Unique Identifiers and Multi-Sets).
As Note 2.1 states only the data instances according to the field of interest
carry information and individuals cannot be distinguished if they are associ-
ated with the same data instance. Thus a data record set can also be defined
as a multiset SM . The data record set Stable from Table 2.1 for example can
be expressed as

SM,table = {28, 30, 40, 52, 28, 28}

Yet considering data record subsets

S1 = ({11, 1, 17, 111, 33}, δ)
S2 = ({11, 1, 17, 111, 34}, δ)

and their respective multiset representations

SM,1 = {28, 30, 40, 52, 28}
SM,2 = {28, 30, 40, 52, 28}

set operations are not well defined. Neither the join ∪ nor the multiset sum
⊎ return the original data record set SM,table:

SM,1 ∪ SM,2 = {28, 30, 40, 52, 28} 6= SM,table

SM,1 ⊎ SM,2 = {28, 30, 40, 52, 28, 28, 28} 6= SM,table

Furthermore vertical representations such as in Table 2.2 are not as straight-
forward to define. Thus it seems convenient to refrain from defining data
record sets as multisets in order to maintain all information that is associ-
ated by collecting data allowing support for notions like vertical data formats
or joining overlapping data record sets as illustrated above.
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data instance individuals the data instance is associated with
28 11, 33, 24
40 17
30 1
52 111

Table 2.2: Vertical format of the data record set from Table 2.1.

2.1 Pattern Mining

Fayyad et al. define knowledge discovery in databases as a process of identi-
fying patterns in data and furthermore specify patterns as “expressions de-
scribing facts in a subset of data” (cf. [25]). This definition already imposes
a meaning on patterns. Based on a more general view a pattern distinguishes
individuals based on their data instance. Thus a pattern defines a class. An
individual can either belong to the respective class or not. This notion is
formalized in Definition 2.3. Note that because individuals associated with
the same data instance cannot be distinguished, they always belong to the
same set of classes.

Based on the data record set defined in Table 2.1 a pattern can for exam-
ple describe all individuals with a height greater than 35 inducing the class
“height > 35”. Only the individuals 17 and 111 belong to that class. If other
variables like hair color were also recorded, then “height > 20∧hairColor =
brown” would also define a class.

Definition 2.3 (Pattern).
Let D be a data domain. A pattern π on data domain D is a function

π : D → {0, 1}.

A data instance d ∈ D is said to match a pattern π on D, if and only if
π(d) = 1. An individual x ∈ X recorded by data record set S = (R, δ : X →
D) is said to match a pattern π on D, if and only if π(δ(x)) = 1.

Given a data record set S, the individuals matching a pattern represent
data record subsets. Instead of storing the individuals for every pattern in-
duced class separately, the respective pattern can be used to project a data
record set onto the set of individuals by filtering those individuals not match-
ing that pattern on demand. The notion of projecting a pattern and a data
record set onto a data record subset is formalized by Definition 2.4.

Definition 2.4 (Pattern Projector).
Let D be a data domain and let ΩD be the set of all possible data record sets
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on D (see Definition 2.2). Let π : D → {0, 1} be a pattern on D. The
function π̄ : ΩD → ΩD is called the pattern projector of π on data domain
D:

π̄ : ΩD → ΩD

(R′, δ) 7→ ({i ∈ R | π(δ(i)) = 1}, δ).

If S is a a data record set on D, then let Sπ be an abbreviation for π̄(S). The
data record subset Sπ is said to be the projection of pattern π onto the data
record set S. The data record subset Sπ is also called the conditional data

record set of the data record set S based on pattern π. Thus Sπ is created
by conditioning on the pattern π.

As mentioned above, patterns are convenient, because they

• save space, as they do not need to store all individuals separately to
define a class,

• can be used as classifiers for individuals not part of the data record set
and

• according to the definition by Fayyad et al. [25] carry meaning (e.g.
“height > 35”, which defines a class and also a pattern).

Note that in general patterns cannot describe all possible data record subsets,
because patterns classify individuals based on their associated data instance.
Thus individuals associated with the same data instance cannot be distin-
guished by a pattern as proven by Theorem 2.1. Without loss of generality
this restriction can be circumvented by pushing an unique identifier into the
data domain when recording. Also, as not the data record set itself, but the
recorded data and its distribution is the focus of interest, this restriction is
of no consequence during further investigations.

Theorem 2.1 (Sub Data Record Sets and Patterns).
Let D be a data domain and S = (R, δ) be a data record set on D. Then
there is no guarantee, that a pattern π exists for every data record subset
S ′ ⊆ S, which projects S onto S ′, i.e. π̄(S) = S ′.

Proof. Let R = {x, y} and let the data recorded for the identifiers x and y be
the same, i.e. δ(x) = δ(y). Furthermore let Sx = ({x}, δ) be a strict subset
of S. π(x) = 1 must hold for a pattern π projecting onto Sx. Yet Sx is a
strict subset of the projected data record set π̄(S), i.e. Sx ⊂ π̄(S) = S. As a
result pattern π does not project onto Sx. 	.
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The number of possible patterns can be very large depending on the data
domain. For example data domains D = {0, 1}n featuring n binary variables
induce 2n patterns. Some of these patterns may be interesting, some may not
according to the current data mining task. Rendering patterns interesting
is usually based on which individuals are part of the conditional data record
subset a pattern projects on. In a market basket database (each article is a
binary variable), articles often bought together can be defined as interesting
patterns. Each such pattern picks out those market baskets containing the
articles it is associated with.

The task of finding constrained sets of patterns (i.e. solutions) based on
a given data record set is called pattern mining and is formally introduced
by Definition 2.6. The set of possible patterns potentially part of a solution
is constrained by so called pattern constraints (see Definition 2.14) forming a
set of valid patterns. The set of possible solutions is furthermore constrained
by so called result constraints (see Definition 2.13).

Definition 2.5 (Pattern Mining Class).
A pattern mining class is a tuple M̄ = (D,Π, CΠ, CR).

• D is a data domain.

• Π is a set of patterns on D.

• CΠ is a set of constraints on patterns Π (pattern constraints).

• CR is a set of constraints on sets of patterns 2Π (result constraints).

Definition 2.6 (Pattern Mining Instance).
A pattern mining instance is a tuple M = (M̄, S).

• M̄ = (D,Π, CΠ, CR) is a pattern mining class.

• S = (R, δ : X → D) is a data record set on data domain D.

A pattern is called valid if it satisfies every pattern constraint c ∈ CΠ. R ⊂ Π
is called a solution to M , if every pattern π ∈ R is valid and if R satisfies
every result constraint c ∈ CR.

Before specifying constraints more precisely the notion of descriptive pat-
tern mining is introduced.
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2.1.1 Descriptive Pattern Mining

A special type of patterns are descriptive patterns. Each descriptive pattern
is associated with a set of items, that can be extracted from data instances
of a data domain. Such items can be, but do not necessarily need to be, aug-
mented with meaning like the value of a variable “color = green”, a feature
like “data instance size > 20” or even boolean formulas “color = green ∧
data instance size > 20”. A data instance matches a descriptive pattern, if
the items associated with the pattern are a subset of those extracted from
the data instance. In the case of market basket data, the items correspond
to articles. A descriptive pattern is associated with a set of articles. An
individual market basket matches a descriptive pattern if the market basket
contains those items associated with the descriptive pattern.

To formally define descriptive patterns it is useful to introduce the no-
tion of data projectors and item projectors first. Data projectors as stated in
definition 2.7 project data into another, arbitrary set. Definition 2.8 defines
a special kind of data projector, the item projector, which projects data in-
stances onto a subset of a set of items. Definition 2.9 uses these notions to
formally introduce the descriptive pattern mining class.

Definition 2.7 (Data Projector).
Let D be a data domain and X be an arbitrary set. A data projector φ on
D is a function

φ : D → X

Definition 2.8 (Item Projector).
Let I be a set of items, i.e. an arbitrary set. A data projector φI on data
domain D is called an I-item projector on D, if its codomain X ⊆ I is
the powerset of the set of items I, i.e.

φI : D → 2I

Definition 2.9 (Descriptive Pattern).
Let D be a data domain and I be a set of items. Let φI : D → 2I be an I-item
projector. With P ⊆ I, an I-descriptive pattern πP on data domain D is
a function

πP : D → {0, 1}

x 7→
{

1, if P ⊆ φI(x)

0, otherwise
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Let furthermore ΠI = {πP | P ⊆ I} denote all possible I-descriptive patterns
on a set of items I. Also when talking about descriptive patterns, it is equiv-
alent to refer to either the pattern itself πP or its associated itemset P , thus
a descriptive pattern πP can also be referred to as descriptive pattern P and
adding an item i ∈ I to the itemset P associated with πP is equivalent to
adding the item i to the descriptive pattern P .

Before defining descriptive pattern mining in Definition 2.11, the notion
of an extension of a descriptive pattern is introduced in Definition 2.10. It
refers to the process of adding an item i ∈ I to an I-descriptive pattern P ,
i.e. extending it by i. A conditional data record set based on a descriptive
pattern P is a superset of the conditional data records sets based on any of
its extensions P ′ as is proven by Theorem 2.2.

Definition 2.10 (Descriptive Pattern: Extension, Specialization, Reduction,
Generalization).
Let P, P ′ ⊆ I be I-descriptive patterns according to a set of items I.

• P ′ is called an extension or specialization of P ,
if and only if P ⊆ P ′.

• P ′ is called a reduction or generalization of P ,
if and only if P ′ ⊆ P .

Let EP be called modification set of the descriptive pattern P . EP is a
set of items EP ⊆ I.

• If EP is disjoint to P , i.e. EP ∩P = ∅, it is called extension set and
defines a set of extensions E+

P = {P ∪ E | E ⊆ EP} = P · 2EP .

• If EP is a subset of P , i.e. EP ⊆ P , it is called a reduction set and
defines a set of reductions E−P = {P \E | E ⊆ EP} = (P \EP ) · 2P∩EP .

Theorem 2.2.

Let πP and πP ′ be descriptive patterns on D and let S = (R, δ : X → D) be
a data record set. Then

P ⊆ P ′ ⇒ SπP ′ ⊆ SπP

Proof. Let φI be an I-item projector. Given Definition 2.4 and 2.9, the
conditional data record set SπP

based on a descriptive pattern πP is defined
as

SπP
= ({i ∈ R | P ⊆ φI(δ(i))}, δ)
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Thus

SπP ′ = ({i ∈ R | P ′ ⊆ φI(δ(i))}, δ)

= ({i ∈ R | (P ∪ P ′ \ P ) ⊆ φI(δ(i))}, δ)

= ({i ∈ R | P ⊆ φI(δ(i)) ∧ (P ′ \ P ) ⊆ φI(δ(i))}, δ)

= ({i ∈ R | P ⊆ φI(δ(i))}, δ) ∩ ({i ∈ R | (P ′ \ P ) ⊆ φI(δ(i))}, δ)

⊆ ({i ∈ R | P ⊆ φI(δ(i))}, δ)

= SπP

Lemma 2.1 (Sequential Projection).
Let πP and πP ′ be descriptive patterns and let S = (R, δ) be a data record
set. Then

P ⊆ P ′ ⇒ π̄P ′(S) = π̄P ′(π̄P (S))

or using a different notation

P ⊆ P ′ ⇒ SπP ′ = (SπP
)πP ′

Definition 2.11 (Descriptive Pattern Mining Class).
Given a set of items I and an I-item projector φI : D → 2I , a pattern mining
class

M̄ = (D,ΠI , CΠI
, CR)

is called a descriptive pattern mining class, if

ΠI = {πP | P ⊆ I}

and can be written as

M̄ = (D, I, φI , CΠI
, CR)

2.2 Constraints

As data mining processes can yield large amounts of patterns or rules, it
is important to filter unrelated or uninteresting results with respect to the
current task [32, p. 265]. Constraints are used to specify the scope of possible
results to be mined. The general notion of a constraint is formalized by
Definition 2.12.
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Definition 2.12 (Constraint).
Let X be an arbitrary set. Then

c : X → {0, 1}

is called a constraint on X. An element x ∈ X satisfies the constraint c,
if and only if c(x) = 1. For compatibility with other work let furthermore

c̄ = {x ∈ X | c(x) = 1}

As a result
c(x) = 1 ⇔ x ∈ c̄

Concerning notation c̄ can be written as c, if ambiguity is not an issue. Thus

c(x) = 1 ⇔ x ∈ c

Note 2.3 (Patterns as Constraints).
By Definition 2.12 of constraints, patterns are constraints on data instances.
This fact is exploited for formulating descriptive pattern mining as a con-
straint programming problem by [22].

In pattern mining there are two sets of constraints :

• result constraints : constraints CR on sets of pattern, i.e. on the solu-
tions of the pattern mining instance and

• pattern constraints : constraints on individual patterns CΠ, i.e. on the
patterns that can be used to make up solutions.

In general the evaluation of patterns and solutions in pattern mining by
constraints depends on the data record set which is given for the specific
pattern mining instance. Result constraints are formally introduced in Defi-
nition 2.13. An example is given by Example 2.3. Definition 2.14 formalizes
pattern constraints illustrated by Example 2.4.

Definition 2.13 (Result Constraint).
Given a set of patterns Π and a data domain D, a result constraint cR is
a constraint on 2Π × ΩD:

cR : 2Π × ΩD → {0, 1}

Example 2.3 (Result Constraint: Size Limitation).
Solutions made of a lot of patterns can be hard to analyze. A few patterns
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might be enough to satisfy the needs of the data mining task. Thus the amount
of patterns in a solution can be limited, i.e. to a maximum of k patterns.

cR,size≤k : 2Π × ΩD → {0, 1}

(R, S) 7→
{

1, if |R| ≤ k

0, otherwise

Note that this result constraint is independent of the data record set given by
the corresponding pattern mining instance.

Definition 2.14 (Pattern Constraint).
Given a set of patterns Π and a data domain D, a pattern constraint is
a constraint on Π× ΩD:

c : Π× ΩD → {0, 1}

Example 2.4 (Pattern Constraint: Frequent Patterns).
Patterns often are only interesting, if they exist in a data record set, i.e. a
data record set actually contains individuals, that match a pattern. Other
mining tasks, like frequent itemset mining (cf. [4]), specify a threshold t,
that has to be surpassed by a pattern to be deemed interesting. The count
of individuals in a data record set that match a pattern is referred to as
frequency or support.

Given a data record set S and a set of patterns Π, the constraint csupp≥t
only renders patterns π ∈ Π valid, that project onto data record subsets with
a cardinality greater than or equal to a given threshold t. In other words, all
valid π ∈ Π with csupp≥t(π) = 1 are frequent patterns with respect to t or in
other words satisfy the support threshold t:

csupp≥t : Π× ΩD → {0, 1}

(π, S ′) 7→
{

1, if |S ′π| ≥ t

0, otherwise

2.2.1 Data Constraints

As shown in Example 2.4, pattern constraints can solely be based on the
given data record set S and the conditional data record set Sπ based on the
pattern π to evaluate. Information about the pattern itself is disregarded
(such information include is e.g. the number of items associated with a
descriptive pattern). These pattern constraints are called data constraints as
formalized by Definition 2.15.
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Definition 2.15 (Data Constraint).
Let D be a data domain and let c be a constraint on ΩD × ΩD:

c : ΩD × ΩD → {0, 1}

A data constraint cdata is a pattern constraint based on c, defined as:

cdata : Π× ΩD → {0, 1}
(π, S) 7→ c(Sπ, S)

Note 2.4 (Defining Data Constraints).
Definition 2.15 makes clear, that defining a data constraint is equivalent to
defining a constraint c on ΩD ×ΩD. Arguments will be used interchangeably:
c(π, S) and c(S ′, S), where π is a pattern and S and S ′ are data record sets.

Example 2.5 (Data Constraint: Weight and Frequency).
Data instances can be weighted by significance. For example not all recorded
data corresponding to an individual might be measured with the same ac-
curacy. Data that was measured very accurately is rated higher than data
measured inaccurately. A pattern can be interpreted as inaccurate and thus
as not valid, if the average weight of its projection onto a given data record
set is below the average weight of the whole data record set.

Let D be data domain and φweight : D → R a data projector, that projects
a data instance associated with an individual onto a weight corresponding to
the accuracy of the recorded data. Only patterns that project onto data record
subsets with an average weight greater than or equal to the average weight of
the whole data record set satisfy the constraint cavg(weight):

cavg(weight) : ΩD × ΩD → {0, 1}

(S ′, S) 7→







1, if

∑

x∈S′
φweight(δ(x))

|S′|
≥

∑

x∈S

φweight(δ(x))

|S|

0, otherwise

Also, the pattern constraint csupp≥t from example 2.4 can be identified as a
data constraint:

csupp≥t : ΩD × ΩD → {0, 1}

(S ′, S) 7→
{

1, if |S ′| ≥ t

0, otherwise
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2.2.2 Description Constraints

In contrast to data constraints, a class of constraints can be identified, which
is solely based on information associated with a pattern independent of the
given data record set. A special kind of such constraints is defined on de-
scriptive patterns. Given a set of items I, each descriptive pattern πP is
associated with a set of items P ⊆ I. Based on this “description”, descrip-
tion constraints can render descriptive patterns valid or not. The formal
definition is given by Definition 2.16. Examples are given by Example 2.6.

Definition 2.16 (Description Constraint).
Let I be a set of items and let ΠI be the set of all I-descriptive patterns.
Furthermore let c be a constraint on the powerset of I, i.e. 2I :

c : 2I → {0, 1}

A description constraint cdesc is a pattern constraint dependent on c and
defined as follows:

cdesc : ΠI × ΩD → {0, 1}
(πP , S) 7→ c(P )

Note 2.5 (Defining Description Constraints).
Definition 2.16 makes clear, that, given a set of items I, defining a descrip-
tion constraint is equivalent to defining a constraint c on 2I . Arguments
will be used interchangeably: c(πP , S) and c(P ), where πP is an I-descriptive
pattern, S is a data record set and P ⊆ I is a subset of the set of items I.

Items can be associated with certain properties. In frequent itemset min-
ing for example items are sometimes associated with a price (cf. [4, 12]).
Items can also be associated with categories or other properties. Definition
2.17 introduces item properties formally.

Definition 2.17 (Item Property).
Given a set of items I = {i1, . . . , in}, an item property is a function

φ : I → X

where X is an arbitrary set.

Example 2.6 (Description Constraint: Price).
As in frequent itemset mining [4, 12], a description constraint cprice≥t can be
based on a price each item is associated with. Only itemsets P (and their
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ID itemset:weight
1 {a, b, c} : 2
2 {a, b} : 2

Table 2.3: A minimal data record set of itemsets with weights.

associated patterns πP ) are rendered valid (cprice≥t(P ) = 1), which sum up to
a price equal to or above a certain threshold t.

Given a set of items I, let φprice : I → R
+ be an item property associating

each item with a price. Let ΠI be the set of all I-descriptive patterns, then
cprice≥t is defined as

cprice≥t : 2I → {0, 1}

P 7→







1, if
∑

i∈P

φprice(i) ≥ t

0, otherwise

Long itemsets (and their associated patterns) can be hard to read and difficult
to interpret. A description constraint can limit the itemset size a descrip-
tive pattern is associated with to a maximal size of t. The corresponding
description constraint csize≤t is defined as

csize≤t : 2I → {0, 1}

P 7→
{

1, if |P | ≤ t

0, otherwise

Note 2.6 (Data and Description Patterns).
Patterns projecting onto the same data record sets will always yield the same
evaluation for any data constraint cdata, i.e.

SP = SP ′ ⇒ cdata(πP , S) = cdata(πP ′ , S)

This is not necessarily true for description constraints.
For example let S be the data record set corresponding to Table 2.3. Let

cweight be the data constraint from Example 2.5 and let csize≤1 be the descrip-
tion constraint from Example 2.6 with a threshold t = 1. Then

Sπ{a}
= Sπ{a,b}

and
cweight(π{a}, S) = cweight(π{a,b}, S)

but
csize≤1(π{a}, S) = 1 6= 0 = csize≤1(π{a,b}, S)
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2.3 Valuation Basis

The information a pattern constraint uses to evaluate a pattern is twofold: it
accesses information about the pattern by itself and in combination with an
initial data record set S (see Definition 2.12). By applying the pattern π to
the given data record set S, the pattern constraint c can also access the condi-
tional data record set Sπ. These two data record sets contain all information
based on data instances available to the constraint c in order to evaluate
the pattern π. The notion of valuation bases represents both data record
sets as single objects, i.e. valuation bases. The basic building blocks of such
objects are data instances. Consequently the most general valuation basis of
a data record set is given by the corresponding multiset of data instances.
Moreover each data instance can be interpreted as a valuation basis. Thus,
more abstractly, the valuation basis of a data record set can be calculated
by iterating over its data instances extracting the corresponding valuation
bases and accumulating them. Following this line of thought the valuation
bases associated with two distinct data record subsets can be accumulated to
yield the valuation basis of their union. Figure 2.1 shows a schematic illus-
tration of these concepts and Definition 2.18 formalizes them. Associating a
data instance with a valuation basis is done by a valuation basis projector as
introduced in Definition 2.19.

Definition 2.18 (Valuation Basis, Valuation Domain).
Let V be an arbitrary set and ⊕ be a binary operator on V , i.e.

⊕ : V × V → V

(a, b) 7→ a⊕ b

Then a valuation domain V = (V,⊕) is an abelian semigroup, i.e.

• V is closed under ⊕, i.e. a, b ∈ V ⇒ a⊕ b ∈ V

• ⊕ is associative, i.e. a, b, c ∈ V ⇒ a⊕ (b⊕ c) = (a⊕ b)⊕ c

• ⊕ is commutative, i.e. a, b ∈ V ⇒ a⊕ b = b⊕ a

An element v ∈ V is called a valuation basis.

Definition 2.19 (Valuation Basis Projector).
Given a data domain D and a valuation domain V = (V,⊕), a V -valuation

basis projector is a data projector

φV : D → V
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Furthermore let φ̄V be defined as

φ̄V : ΩD → N
D
0

S 7→ ⊕

r∈S

φV (δ(r))

where N
D
0 is the set of all multisets over D. Note that data instances can

occur multiple times in a multiset. φ̄V is used to project a data record set
onto its valuation basis. φ̄V is also written as φV is ambiguity is not an issue.

A simple valuation basis is the frequency or the support. The corre-
sponding valuation domain Vsupp = (N,+N) is the set of natural numbers N
together with the addition operator ⊕ = +. Each individual only occurs one
time in the data record set, thus, it is associated with a support of one. The
accumulated valuation basis for any data record set or data record subset is
the sum of all supports. The same is applicable for a weight associated with
each data instance. The corresponding valuation domain Vweight = (R+,+R)
can be the set of positive real numbers together with the addition operator
⊕ = +. Now, some constraints might need the support for evaluation and
some a sum of weights. Instead of associating several valuation bases with
a single data instance an aggregate valuation basis is formed. In the case of
support and a sum of weights, the tuple (1, φweight(δ(i))) ∈ Vsupp × Vweight is
the aggregated valuation basis for both data instance. The corresponding val-
uation domain is Vcombined = (Vsupp × Vweight,⊕+N,+R

), where ⊕+N,+R
applies

the accumulation operators of each aggregated valuation basis component-
wise, i.e.

⊕+N,+R
: (Vsupp × Vweight)× (Vsupp × Vweight) → Vsupp × Vweight

((asupp, aweight), (bsupp, bweight)) 7→ (asupp +N bsupp, aweight +R bweight)

Thus valuation domains can be combined at will by using the carthesian
product. See Figure 2.2 illustrating the combination of support and weight
in one valuation basis. If valuation bases share components a compressed
aggregated representation is also possible. E.g. Vcombined and Vsupp trivially
share the support component, where Vcombined is the compressed representa-
tion of their aggregate.

As derived in the introduction of this section, the most general valua-
tion basis is a multiset of data instances. Thus given a data domain D the
corresponding abelian semigroup V̄ = (ND

0 ,⊎) is the corresponding valuation
domain, where N

D
0 denotes set set of all multisets based on D and ⊎ the

multiset sum, i.e. {1, 1, 2}⊎{1, 1, 3} = {1, 1, 1, 1, 2, 3} (see Note 2.2). A data
record (i, δ(i)) is associated with the corresponding data instance δ(i) itself
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Figure 2.1: A schematic illustrations of valuation bases and their accumula-
tion.
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data record set S
valuation bases

ID data instance

id1 d1 φVcombi
(1, w1)

id2 d2 φVcombi
(1, w2)

id3 d3 φVcombi
(1, w3)

id4 d4 φVcombi
(1, w4)

id5 d5 φVcombi
(1, w5)

⊕

(5,
5
∑

i=1

wi)accumulated valuation basis:

Figure 2.2: A schematic illustration of valuation bases consisting of frequency
and a weight. The corresponding valuation domain is Vcombined = (Vsupp ×
Vweight,⊕+N,+R

).

(see Figure 2.3). Thus the V̄ -valuation basis projector φV̄ is

φV̄ : D → N
D
0

d 7→ {d}

This kind of a valuation basis subsumes all information contained by
a data record set because, without loss of generality, the association with
identifiers does not carry any information (see Note 2.1 and Note 2.2). As
a result it is equivalent to use either data record sets or their respective
valuation bases as input for constraints. Dependent on the constraint

• the valuation basis φV (S) of the whole data record set S,

• the valuation basis φV (Sπ) of the conditional data record set Sπ based
on the pattern π to evaluate and

• the valuation basis φV (S̄π) corresponding to the data record subset S̄π

only containing data records not matching the pattern π to evaluate

are needed. If considering the valuation basis V̄ then φV (S̄π) can be derived
from φV (S) and φV (S̄π). Consequently constraints can be reformulated tak-
ing valuation bases as arguments instead of the initial data record set given an
appropriate valuation domain. Let V = (V,⊕) be an appropriate valuation
domain, then a pattern constraint c is defined as

c : Π× V × V → {0, 1}
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data record set S
valuation bases

ID data instance

id1 d1 φV̄ {d1}
id2 d2 φV̄ {d2}
id3 d3 φV̄ {d3}
id4 d4 φV̄ {d4}
id5 d5 φV̄ {d5}

⊎

{d1, d2, d3, d4, d5}accumulated valuation basis:

Figure 2.3: A schematic illustration of valuation bases consisting of multisets
of data instances, which is the most general valuation basis to be specified.
The corresponding valuation domain is V̄ = (ND

0 ,⊎). Note that di = dj is
possible for any pair of data instances with i, j ∈ {1, 2, 3, 4, 5}.

The third argument is always set to the valuation basis of the initial data
record set of a descriptive data mining instance, i.e. evaluating a pattern π

would be done by calling c(π, φV (Sπ), φV (S)).



3
Search

A solution of a pattern mining instance M = ((D,Π, CΠ, CR), S) is a set
of patterns R ⊆ Π. Searching solutions can be done exhaustively. It can
also be sufficient to find a single solution. Search strategies depend on the
objective and the pattern mining class. One class of pattern mining is the
descriptive pattern mining class as introduced in Section 2.1.1, where patterns
πP are based on subsets P ⊆ I of a set of items I. Section 3.1 states the
general problem setting for any search strategy used to solve a pattern mining
instance. It then reviews bottom-up and top-down enumeration of itemsets as
an approach to solving descriptive pattern mining instances. The possibility
of solution generation while enumerating descriptive patterns is also covered.

Considering that in descriptive pattern mining the space of patterns Π
grows exponentially with respect to the amount of possible items |I|, it is
important to optimize the search strategies in use. Section 3.2 builds upon
the bottom-up approach from Section 3.1 and reviews several possibilities for
optimization including pruning methods and efficient data structures.

3.1 Strategy

There are two prominent objectives when solving a pattern mining instance

M = ((D,Π, CΠ, CR), S)

• One is searching for the complete set of solutions.

• The other is searching for a single solution.

25
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Listing 3.1: Pattern discovery.
1 PROCEDURE patternDiscovery(Π, CΠ, S) :
2 Πvalid ← ∅
3 f o ra l l π ∈ Π do

4 i f (π, S) s t a t i s f i e s a l l cΠ ∈ CΠ do

5 Πvalid ← Πvalid ∪ {π}
6 endif

7 endfor

8 return Πvalid

Independent of the objective the vanilla way of searching for solutions can
be divided into two steps, which are applied in sequence:

• pattern discovery: enumerate all possible patterns π ∈ Π and filter
them according to the patten constraints CΠ, so that only valid patterns
Πvalid remain

• solution discovery: enumerate all possible sets of valid patterns R ⊆
Πvalid and filter them according to the result constraints CR, until only
solutions remain, i.e. sets of valid patterns that satisfy all result con-
straints CR

If it is sufficient to find only one solution, then the solution discovery step
terminates as soon as one enumerated set of valid patterns satisfies all result
constraints CR. This Section focuses on the

• descriptive pattern mining class M̄ = (D, I, φI , CΠI
, CR)

• searching for a single solution.

Section 3.1.1 reviews bottom-up and top-down generation of itemsets to enu-
merate descriptive patterns. A generative approach to solution discovery is
outlined contrasting the more intuitive selective approach mentioned above
in Section 3.1.2.

3.1.1 Pattern Discovery

Let M = ((D,Π, CΠ, CR), S) be a pattern mining instance. Then the pat-
tern discovery step is responsible for filtering patterns Π, so that only valid
patterns Πvalid remain, i.e. those patterns that satisfy all pattern constraints
CΠ. As shown in Listing 3.1 the most basic variant of pattern discovery is
to iterate over all patterns π ∈ Π and check, if they satisfy every patten
constraint cΠ ∈ CΠ.
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Listing 3.2: Descriptive pattern discovery.
1 PROCEDURE patternDiscovery(I, CΠI

, S) :
2 Πvalid = ∅
3 f o ra l l P ∈ 2I do // indirect enumeration of patterns by their associated itemsets
4 i f (πP , S) s t a t i s f i e s a l l cΠI

∈ CΠI
do

5 Πvalid ← Πvalid ∪ {πP }
6 endif

7 endfor

8 return Πvalid

Let M = ((D, I, φI , CΠI
, CR) be a descriptive patter mining instance.

Then the descriptive patterns ΠI = {πP | P ⊆ I} are indirectly specified by
the given set of items I. Thus descriptive patterns πP can be enumerated by
iterating over all subsets P ⊆ I of the set of items I. Listing 3.2 shows the
respectively modified version of the algorithm in Listing 3.1.

Enumeration Methods: Bottom-Up and Top-Down

The concept of descriptive patterns appears in a variety of different data
mining tasks. In frequent itemset mining (cf. [4]) a descriptive pattern corre-
sponds to an itemset. In subgroup mining (cf. [56]) subgroup descriptions are
often defined as conjunctions of descriptive elements and community mining
as introduced in [6] defines an equivalent concept of community descriptions.
Not considering the individual constraints, the search space for any of these
applications is the same, i.e. a powerset 2I of items I. [39] states that an
algorithm searching for patterns traverses a search lattice in most cases. In-
deed the search space induced by descriptive pattern mining can be pictured
as the powerset lattice based on the corresponding set of items (see Figure
3.1(a)). There are two dominating approaches to traversing the lattice of
descriptive patterns :

• the bottom-up and

• the top-down approach.

Both, the bottom-up and the top-down traversal, have two important prop-
erties:

• they can be designed to avoid enumerating a single descriptive pattern
twice and

• instead of traversing the whole lattice their characteristic way of enu-
merating descriptive patterns in combination with certain constraints
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can be exploited in order to skip part of the lattice (see for example
Section 3.2.1).

The bottom-up approach traverses the lattice from the bottom up starting
with the empty set ∅, i.e. a single traversal path is based on the corresponding
lower semilattice (see Figure 3.1(d)). It gradually adds items to the current
itemset to traverse the lattice, thus it literally “grows” descriptive patterns.
The top-down approach traverses the lattice from the top down starting with
the full set I, i.e. a single traversal path is based on the corresponding upper
semilattice (see Figure 3.1(c)). It gradually removes items from the current
itemset to traverse the tree, thus it literally “shrinks” descriptive patterns.
This section focuses on atomic modifications of the current itemsets, i.e.
adding or removing one item at a time. Note that traversing the lattice is
equivalent to atomically adding or removing a single item at a time.

Note 3.1 (Bottom-Up and Top-Down in Frequent Itemset Mining).
In frequent itemset mining (cf. [4]) and related tasks both methods, bottom-up
as well as top-down, are being applied. Apriori (see [4]) and FP-Growth (see
[33]) based methods are usually working with bottom-up search. But there are
algorithms that pursuit top-down methods or modifications and hybrids (cf.
[45, 58]).

Enumerating each descriptive pattern only once by traversing a semilat-
tice is equivalent to only using a single incoming edge for each descriptive pat-
tern. Thus the semilattice to traverse degenerates into a tree. Figure 3.1(b)
shows how a lower semilattice degenerates into a tree. Figure 3.2(a) shows
the corresponding tree based on the lower semilattice featuring a bottom-up
enumeration and Figure 3.2(b) shows the same for the upper semilattice fea-
turing the top-down approach. Figure 3.3 shows which items are added or
removed independent of the traversal approach. To ensure the degeneration
into a tree the notion of modification sets (see Definition 2.10) can be used.

An algorithm based on modification sets is shown by Listing 3.3. It uses
the items from the modification set EP of the current descriptive pattern πP

to atomically extend or reduce the set of items P to enumerate all descriptive
patterns. If the respective modification sets are not chosen wisely, repetition
is introduced. The worst case is for all modification sets EP to be the full
set of items (i.e. EP = I \ P (bottom-up) and EP = P (top-down)). Then
every possible path defined by a semilattice is traversed introducing a large
amount of replication. In Figure 3.1(d) for example every descriptive pattern
at level one would be enumerated once, the descriptive patterns at level two
twice, at level three thrice, etc. A more subtle scenario for a repetitive
enumeration is given by Example 3.1. However, reducing the modification



3.1. Strategy 29

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

(a) Powerset lattice.

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ ⊆

⊆

(b) The lower semilattice degenerated into
a tree.

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

⊇ ⊇ ⊇ ⊇

⊇ ⊇ ⊇⊇ ⊇ ⊇⊇ ⊇ ⊇⊇ ⊇ ⊇

⊇ ⊇ ⊇⊇ ⊇ ⊇⊇ ⊇ ⊇⊇ ⊇ ⊇

⊇ ⊇ ⊇ ⊇

(c) The upper semilattice.

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆⊆ ⊆ ⊆⊆ ⊆ ⊆⊆ ⊆ ⊆

⊆ ⊆ ⊆⊆ ⊆ ⊆⊆ ⊆ ⊆⊆ ⊆ ⊆

⊆ ⊆ ⊆ ⊆

(d) The lower semilattice.

Figure 3.1: The powerset lattice based on a set of items I = {a, b, c, d}
is an aggregate of an upper and a lower semilattice. The semilattices can
degenerate into trees.
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Listing 3.3: Bottom-up descriptive pattern discovery based on modification
sets. The commented-out lines refer to the top-down variant.

1 VARIABLES:
2 Πvalid ← ∅
3 CΠI

// set implicitly
4 S // set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, E∅)
8 // call patternDiscoveryrec(I, EI) /* top-down */
9 return Πvalid

10

11 PROCEDURE patternDiscoveryrec(P,EP ) :
12 f o ra l l i ∈ EP do

13 P ′ ← P ∪ {i}
14 // P ′ ← P \ {i} /* (top-down) */
15

16 i f (πP ′ , S) s t a t i s f i e s a l l cΠI
∈ CΠI

do

17 Πvalid ← Πvalid ∪ {πP ′}
18 endif

19

20 ca l l patternDiscoveryrec(P ′, EP ′)
21 endfor

sets for each descriptive pattern can avoid repetition while still enumerating
all descriptive patterns. The algorithm from Listing 3.3 would turn into a
depth-first tree traversal algorithm (depth-first and breadth-first methods of
traversing trees are reviewed in detail in Section 3.1.1). Figure 3.2(a) and
3.2(b) show examples for correctly chosen modification sets.

Example 3.1 (Repetition).
Let I = {a, b, c} be a set of items. Let E{a} = {b, c}. Thus {a} can be
grown into {a, b} and {a, c}. If E{a,b} and E{a,c} are not further limited then
E{a,b} = {c} and E{a,c} = {b}. As a result {a, b} can be grown into {a, b, c}
and {a, c} can be grown into {a, c, b}. Thus the lattice of descriptive patterns
does not degenerate into a tree and a enumeration based on the algorithm
specified by Listing 3.3 would lead to a repetition during enumeration. Either
E{a,b} and E{a,c} would need to be further limited and set to ∅ in this case.

Note that algorithm 3.3 does not specify a method for calculating mod-
ification sets. As modification sets are solely dependent on the associated
descriptive pattern there are many ways to choose them avoiding repetition.
One way of choosing a modification set EP ′ for a descriptive pattern πP ′ is
to introduce a dependency on the modification set EP of its parent descrip-
tive pattern πP . For this purpose an order is imposed on each individual
modification set. Such an order is called item order oIP and is introduced by
Definition 3.1. Note that an order oIP is dependent on the descriptive pattern
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Figure 3.2: Bottom-up and top-down enumeration of subsets of I = {a, b, c, d}
with a reversed lexical item order oIP (a > b > . . .) for every itemset P ⊆ I.
The larger script indicates the current itemset P , the smaller script indicates
the respective modification set EP .
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Figure 3.3: Each node represents the item added (bottom-up) or removed
(top-down) from the parent descriptive pattern in order to create the given
descriptive pattern. This figure is based on Figure 3.2, thus featuring the
items I = {a, b, c, d}. Independently of the descriptive patterns the item
order oIP is the reversed lexical order (a > b > . . .).

πP .

Definition 3.1 (Item Order).
Let I be a set of items and P ⊆ I. An item order oIP is a bijective function

oIP : EP → {1, . . . , |EP |}

This function imposes an order on the modification set EP of P .

Based on the atomic modifications implied by tree traversal, the descrip-
tive pattern πP is modified by adding or removing an item i ∈ EP to yield
the descriptive pattern πP ′, i.e. P ′ = P ∪ {i}. The modification set EP∪{i}

assigned to P ∪{i} can be limited to items j ∈ EP smaller than i by the order
imposed by an item order oIP , i.e. oIP (j) < oIP (i). Thus the modification set
EP∪{i} can be calculated as follows:

EP∪{i} = {j | j ∈ EP ∧ oIP (j) < oIP (i)} (3.1)

The same holds for shrinking and the corresponding modification set EP\{i}.
Choosing modification sets in such a way ensures the degeneration of the

descriptive pattern lattice into a tree, thus no repetition will occur during the
enumeration. Based on a descriptive pattern πP and its modification set EP ,
this method limits the modifications πP ′ traversed starting at πP to those
from the associated set of modifications E

+/−
P (extensions E+

P or reductions
E−P , see Definition 2.10). In other words a prefix structure is induced. Given
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Figure 3.4: Powerset lower semilattices illustrating the modifications πP ′

traversed starting at the descriptive patterns associated with a single item
(i.e. π{i} with i ∈ I), once for a modification set generation based on item
orders and once for an arbitrary way of choosingmodification sets that cannot
be derived by using item orders.

the bottom-up traversal approach this means, given an item i ∈ EP , any
extension πP ′ based on the descriptive pattern πP∪{i} and its modification set

EP∪{i} (i.e. P
′ ∈ E

+/−
P∪{i}) does not contain greater items j ∈ EP (i.e. j 6∈ P ′)

with respect to the corresponding item order oIP , i.e. oIP (i) < oIP (j). Figure
3.4 shows the modifications πP ′ traversed starting at the descriptive patterns
associated with a single item (i.e. π{i} with i ∈ I), once for a modification set
generation based on item orders and once for an arbitrary way of choosing
modification sets that cannot be derived by using item orders.

Based on the algorithm from Listing 3.3 an adjusted version is given by
Listing 3.4 using item orders to generate modification stets. For clarity, both,
Figure 3.2(a) and Figure 3.2(b), apply a reversed lexical order oIP (a > b >

. . .) on the modification set EP independent of the descriptive pattern πP .
Note again, that in general the orders can be different for each descriptive
pattern without yielding repetition. Figure 3.5 shows how arbitrary item
orders dependent on individual descriptive patterns can influence the search.
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Listing 3.4: Bottom-up descriptive pattern discovery based on modification
sets generated using item orders. The commented-out lines refer to the top-
down variant.

1 VARIABLES:
2 Πvalid ← ∅
3 S // set implicitly
4 CΠI

// set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, E∅)
8 // call patternDiscoveryrec(I, ∅)
9 return Πvalid

10

11 PROCEDURE patternDiscoveryrec(P,EP ) :
12 f o ra l l i ∈ EP do

13

14 P ′ ← P ∪ {i}
15 // P ′ ← P \ {i} /* (top-down) */
16

17 i f (πP ′ , S) s t a t i s f i e s a l l cΠI
∈ CΠI

do

18 Πvalid ← Πvalid ∪ {πP ′}
19 endif

20

21 EP ′ ← {j | j ∈ EP ∧ oI
P
(j) < oI

P
(i)} // modification set generation

22 ca l l patternDiscoveryrec(P ′, EP ′)
23 endfor
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Figure 3.5: Bottom-up and top-down enumeration of subsets of I = {a, b, c, d}
with an individual item order for every itemset P ⊆ I. The larger script
indicates the current itemset P , the smaller script indicates the respective
modification set EP .
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Enumeration Order

By degenerating a semilattice of descriptive patterns into a tree, the enumer-
ation of descriptive patterns without repetition can be viewed as traversing
a tree. When enumerating all descriptive patterns πP ∈ ΠI during pattern
discovery the resulting set of valid descriptive patterns ΠI,valid is independent
of the order in which the patterns are enumerated. In other scenarios this
order can make a difference. For example in the case of a generative solution
discovery (see Section 3.1.2) the descriptive patterns are not added to the
set of valid descriptive patterns ΠI,valid, but to a solution directly. The final
solution can differ based on the order patterns were enumerated. Addition-
ally dynamic constraints can be present, which evaluate patterns dependent
on patterns that were already found (see 3.2.2). In those cases, the order of
adding descriptive patterns to the respective set matters. Adding descriptive
patterns to the respective set is called to “output” that pattern. The follow-
ing subsections review two general tree traversal methods yielding different
output orders and examine how branching orders influence the output order
of descriptive patterns.

Depth-First and Breadth-First Given bottom-up or top-down search
there are two easily distinguishable ways to traverse the associated search
tree (see Figure 3.2(a) and Figure 3.2(b) for examples on search trees):

• the depth-first and

• the breadth-first approach.

To keep things simple and as both methods can be applied to any tree,
this section will focus on trees based on bottom-up search, without loss of
generality.

The depth-first traversal method prioritizes modifying descriptive pat-
terns recursively before considering alternative atomic modifications of a de-
scriptive pattern. As soon as a descriptive pattern with an empty modifica-
tion set is reached, it backtracks to the last descriptive pattern with items in
the respective modification set that were not used for modification yet, and
repeats the procedure. The enumerated descriptive patterns can either be re-
turned before (pre-order) or after (post-order) all of their modifications have
been generated. The former means, that, along a modification path, shorter
descriptive patterns associated with less items are returned first, while the
latter returns longer descriptive patterns first. For illustration a simplified
version of the depth-first traversal algorithm based on tree nodes is given by
Listing 3.5. The example algorithm for bottom-up enumeration of descriptive
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Listing 3.5: Depth-first tree traversal.
1 PROCEDURE visitdepthFirst(Node n) :
2

3 ca l l ouputpre-order(n)
4

5 f o ra l l c ∈ n.children do

6 ca l l visitdepthFirst(c)
7 endfor

8

9 ca l l outputpost-order(n)

Listing 3.6: Breadth-first tree traversal.
1 PROCEDURE visitbreadthFirst() :
2 N ← {rootNode}
3

4 while N 6= ∅ do

5 N ′ ← N
6 N ← ∅
7

8 f o ra l l n ∈ N ′ do

9 f o ra l l c ∈ n.children do

10 ca l l output(c)
11 N ← N ∪ {c}
12 endfor

13 endfor

14 endwhile

patterns creating modification sets using item orders given by Listing 3.4
uses a depth-first approach based on pre-order. An example of enumerations
based on depth-first traversal is given by Figure 3.6.

The breadth-first approach visits all nodes at a certain depth k, before
visiting any node of depth k + 1. For a bottom-up itemset enumeration this
means that all descriptive patterns associated with k items (or a k-itemset)
are enumerated before any descriptive patterns associated with k+1-itemset.
A simple algorithm for breadth-first tree traversal is given by Listing 3.6. An
example of the order of output is given by Figure 3.7(a).

Note 3.2 (Depth-First and Breadth-First in Frequent Pattern Mining).
The Apriori based algorithms (cf. [3]) differ from FP-Growth based algo-
rithms (cf. [33]) in their enumeration order. While both are based on a
bottom-up approach, the Apriori based algorithms generally apply breadth-
first methods while FP-Growth based algorithms mainly work in a depth-first
manner.

A hybrid of breadth-first and depth-first based on tree traversal is given
by algorithm 3.7. The underlying traversal method is a depth-first approach
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(b) Post-Order.

Figure 3.6: Depth-first enumeration of itemsets for the bottom-up search tree
from Figure 3.2(a) using the lexical order (a < b < . . .) on items to impose
an order on visiting branches (smaller items are used for branching first).
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(b) Hybrid.

Figure 3.7: Breadth-First and hybrid enumeration of itemsets for the bottom-
up search tree from Figure 3.2(a) using the lexical order (a < b < . . .) on
items to impose an order on visiting branches (smaller items are used for
branching first).
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Listing 3.7: Depth-first tree traversal with early node output.
1 PROCEDURE visitearly(Noden) :
2

3 f o ra l l c ∈ n.children do

4 ca l l output(c)
5 endfor

6

7 f o ra l l c ∈ n.children do

8 ca l l visitearly(c)
9 endfor

based on pre-order, yet given a descriptive pattern, this algorithm outputs
all atomic modifications before recursively modifying any of them. When
using modification sets and given an itemset P , this corresponds outputting
all descriptive patterns P ∪ {i}, where i ∈ EP , before recursively extending
an itemset P ∪ {i} by j ∈ EP∪{i}. The depth-first algorithm from Listing
3.4 is modified accordingly by Listing 3.7, yielding an bottom-up depth-first
algorithm, that adds descriptive patterns “early”. An example of the output
order is given by Figure 3.7(b).

Branching Order Besides the depth-first and breadth-first tree traversal
methods and respective hybrids as introduced by Section 3.1.1 the branching
order also influences the output order of descriptive patterns. Until now the
branching order was not explicitly specified. The notion of branching orders
is formally introduced by Definition 3.2. The order of modifying a descriptive
pattern πP using items i ∈ EP from the respective modification set is based
on the respective branching order oBP . Given two items i, j ∈ EP , i is used
for modification before j, if the branching order assigns a lower number to i,
i.e. oBP (i) < oBP (j). This is illustrated by Figure 3.8.

Figure 3.9 shows a search tree using different branching orders for indi-
vidual descriptive patterns based on a bottom-up, depth-first and pre-ordered
enumeration approach contrasting the global lexical branching order from
Figure 3.6(a). Listing 3.9 shows a modified version of the bottom-up, depth-
first and pre-ordered algorithm from Listing 3.4 using branching orders be-
sides item orders.

Definition 3.2 (Branching Order).
Let I be a set of items and P ⊆ I. An item order oBP is a bijective function

oBP : EP → {1, . . . , |EP |}

This function imposes an order on a modification set EP of P .
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Listing 3.8: Bottom-up, depth-first and pre-ordered descriptive pattern dis-
covery, based on modification sets, generated using item orders, adding de-
scriptive patterns early to the result.

1 VARIABLES:
2 R← ∅ // result
3 S // set implicitly
4 CΠI

// set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, I)
8 return R
9

10 PROCEDURE patternDiscoveryrec(P,EP ) :
11 f o ra l l i ∈ EP do

12 P ′ ← P ∪ {i}
13 i f (πP ′ , S) s t a t i s f i e s a l l cΠI

∈ CΠI
do

14 R← R ∪ {πP ′}
15 endif

16 endfor

17

18 f o ra l l i ∈ EP do

19 P ′ ← P ∪ {i}
20 EP ′ ← {j | j ∈ EP ∧ oIP (j) < oIP (i)} // modification set generation
21 ca l l patternDiscoveryrec(P ′, EP ′)
22 endfor

πP

EP

πP∪{i1}

EP∪{i1}

πP∪{i2}

EP∪{i2}
. . . πP∪{in}

EP∪{in}

Figure 3.8: Branching order of the descriptive pattern πP from left to right,
where oBP (ij) = j, thus i1 < i2 < . . . (smaller items are used for branching
first).
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Figure 3.9: Enumeration order based on bottom-up, depth-first and pre-
ordered search for descriptive patterns equivalently to Figure 3.6(a). In
contrast to Figure 3.6(a) which uses a global lexical branching order, i.e.
a < b < . . ., this figure uses arbitrary branching orders dependent on each
individual descriptive pattern.

Listing 3.9: Bottom-up descriptive pattern discovery based on modification
sets generated using item orders and branching orders

1 VARIABLES:
2 R← ∅
3 S // set implicitly
4 CΠI

// set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, I)
8 return R
9

10 PROCEDURE patternDiscoveryrec(P,EP ) :
11

12 EP []← sort(EP , oB
P
) // sort ascending by branching order

13 f o ra l l i ∈ EP [] do

14 P ′ ← P ∪ {i}
15

16 i f (πP ′ , S) s t a t i s f i e s a l l cΠI
∈ CΠI

do

17 R← R ∪ {πP ′}
18 endif

19

20 EP ′ ← {j | j ∈ EP ∧ oI
P
(j) < oI

P
(i)} // modification set generation

21 ca l l patternDiscoveryrec(P ′, EP ′ )
22 endfor
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Listing 3.10: Solution discovery: a selective approach.
1 PROCEDURE solutionDiscovery(Πvalid, CR, S) :
2 X = ∅ // solutions
3 f o ra l l R ∈ 2Πvalid do

4 i f (R, S) s t a t i s f i e s a l l cR ∈ CR do

5 X = X ∪ R
6 endif

7 endfor

8 return X

Note 3.3 (Branching Set).
Note that a branching set can be separated as a subset of the modification set.
The branching set further limits the branches that will be explored, i.e. the
items that are used for modification of the current descriptive pattern. This
only limits the immediate modification of a descriptive pattern, but does not
influence the modification sets of the resulting descriptive patterns in contrast
to limiting the current modification set.

3.1.2 Solution Discovery

The vanilla approach to solution discovery is the same as for pattern dis-
covery : enumerating all possible subsets R ⊆ Πvalid of valid patterns Πvalid

and selecting only solutions, i.e. subsets R that pass all result constraints
cR ∈ CR. The respective algorithm is given by Listing 3.10.

The requirement for this approach is to have access to all valid patterns
π ∈ Π. In descriptive pattern mining the amount of possibly valid descrip-
tive patterns πP ∈ ΠI,valid grows exponentially with respect to the size |I|
of the associated set of items I. Available space can easily be exhausted.
Additionally the set of possible solutions grows exponentially with respect to
the set of valid patterns. Thus the process of applying pattern discovery and
solution discovery sequentially is often not feasible.

To avoid this problem a solution can be iteratively generated during pat-
tern discovery instead of being selected in a second solution discovery step,
i.e. a solution is discovered using a generative approach instead of a selective
one. While one can imagine to build more than one solution during pattern
discovery, the remainder of this work will assume that only one such solution
is built.

The notion of subsequently building a solution is formalized by an append
function α introduced by Definition 3.3. Listing 3.11 shows a modified version
of the algorithm given by Listing 3.9 using an append function to generate a
solution instead of returning all valid descriptive patterns. Note that not all
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result constraints allow for a generative approach using an append function
α, without storing all or at least a subset of all found patterns. Example 3.2
illustrates as much.

Definition 3.3 (Append Function).
Let M = ((D,Π, CΠ, CR), S) be a pattern mining instance. Let

Πvalid = {π | π ∈ Π ∧ ∀cΠ ∈ CΠ : cΠ(π) = 1}

be the set of all valid patterns. Let furthermore a bijective function

oΠ : Πvalid → {1, . . . , |Πvalid|}

be called a pattern order on the patterns Πvalid. If a solution to the pattern
mining instance M exists, then an append function α is a function

α : Π× ΩD × 2Π → 2Π

Let πi denote the pattern π with oΠ(π) = i and let

• R0 = ∅ and

• Ri+1 = α(πi+1, S, R
i)

The append function α must be defined such that R|Πvalid| is a solution to the
pattern mining instance M . Note that the pattern order can influence the
solution.

Example 3.2 (Limitations of the Generative Approach).
Let M = (S,Π, CΠ, CR) be a pattern mining instance and let R ⊆ Π be a
solution to M found during pattern discovery. The coverage SR of S by R

is defined as

SR =
⋃

π∈R

π̄(S) =
⋃

π∈R

Sπ

The coverage ratio qRS is defined as

qRS =
|SR|
|S|

Let the result constraint ccoverage only be satisfied, if a given set of patterns R
covers the whole data record set S, that is SR = S or equivalently qRS = 1:

ccoverage : 2Π × Ωδ → {0, 1}

(R, S) 7→
{

1, if SR = R

0, else
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Listing 3.11: Bottom-up descriptive pattern discovery based on modification
sets generated using item orders and branching orders

1 VARIABLES:
2 R← ∅
3 S // set implicitly
4 CΠI

// set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, I)
8 return R
9

10 PROCEDURE patternDiscoveryrec(P,EP ) :
11

12 EP []← sort(EP , oB
P
) // sort ascending by branching order

13 f o ra l l i ∈ EP [] do

14 P ′ ← P ∪ {i}
15

16 i f (πP ′ , S) s t a t i s f i e s a l l cΠI
∈ CΠI

do

17 R← α(πP ′ , S,R) // α contains information about result constraints
18 endif

19

20 EP ′ ← {j | j ∈ EP ∧ oI
P
(j) < oI

P
(i)} // modification set generation

21 ca l l patternDiscoveryrec(P ′, EP ′)
22 endfor

Let furthermore csize≤k be the result constraint from Example 2.3. If

CR = {ccoverage, csize≤2}

then it is impossible to find an appropriate append function for CR. For
example let the set of all valid patterns be

Πvalid = {π1, π2, π3, π4}

and let R′ = {π1, π4} be a solution such that the coverage constraint is sat-
isfied (i.e. ccoverage(R

′) = 1). Let the patterns π1, π2, π3, π4 be enumerated
in that order. After adding π1 and π2 to the result set R, any given append
function α must decide to either discard the new pattern or remove either
π1 or π2 from R in favor of π3, due to the size constraint csize,2. Without
further information or caching, it is a random choice at this point and the
append function might discard π1, thus returning a set of patterns, which is
not a solution. As a result an append function as defined in Definition 3.3
for the set of result constraints CR = {ccoverage, csize≤2} does not exist. In-
stead the result when using a append function in such a scenario will be a
local optimum rather than a global optimum, that is if random decisions are
made.
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3.2 Optimizations

Considering a descriptive pattern mining class M̄ = (D, I, φI , CΠI
, CR), the

set of possible descriptive patterns ΠI = {πP |P ∈ 2I} grows exponentially
with respect to the size |I| of the set of items I. With no optimizations each
pattern needs to be enumerated and checked during the pattern discovery
step. Section 3.2.1 reviews methods to skip parts of the pattern space in
descriptive pattern mining to reduce the amount of enumerated descriptive
patterns and corresponding constraint checking.

Result constraints introduce dependencies between patterns. Some pat-
terns exclude other patterns from solutions. Especially in combination with
generative solution discovery (see Section 3.1.2) information about already
found patterns can be used in synergy with result patterns to further prune
the search space. This notion is elaborated in Section 3.2.2.

When checking a pattern π against constraints, it is often necessary to
project π onto the given data record set and filter items based on the current
modification set (see Section 3.1.1). This process is costly as data record
sets can be large. It is possible to gain performance by recursively building
compact representations of such projections. Possible data structures are
reviewed in Section 3.2.3.

3.2.1 Pruning

Let M = ((D, I, φI, CΠI
, CR), S) be the descriptive pattern mining instance

referred to throughout this section. The set of patterns ΠI = {πP |P ∈
2I} grows exponentially with respect to the number of items |I|. To make
descriptive pattern mining feasible, optimizations need to be applied in order
to avoid enumerating the search space. In this section descriptive patterns
are enumerated based on bottom-up, depth-first and pre-ordered descriptive
pattern enumeration as introduced in Section 3.1.1. An example of a tree
containing all possible descriptive patterns ΠI of a descriptive pattern mining
instance is given by Figure 3.2(a). Each node N represents a descriptive
pattern πPN

and its modification set EPN
. Let

ΠI,invalid = {π | ∃c ∈ CΠI
: c(S, π) = 0}

denote all the invalid descriptive patterns with respect to a descriptive pattern
mining instance M , i.e. all descriptive patterns that do not satisfy some
pattern constraint given by M , and

ΠI,valid = {π | ∀c ∈ CΠI
: c(S, π) = 1}
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denote the valid descriptive patterns, i.e. all descriptive patterns, that satisfy
every pattern constraint given by M .

When traversing the tree without any optimizations (as the algorithm in
Listing 3.9 does for instance) then every single descriptive pattern πP ∈ ΠI

is enumerated and checked against every single pattern constraint cΠ ∈ CΠ.
A complete search tree with invalid descriptive patterns πP,invalid ∈ ΠI,invalid

depicted as nodes with a darker background color is shown by Figure 3.10(a).
The other descriptive patterns πP,valid ∈ ΠI,valid were able to satisfy every
descriptive constraint cΠ ∈ CΠ.

A fully optimized bottom-up enumeration of descriptive patterns πP ∈
ΠI is equivalent to traversing a tree only consisting of nodes representing
valid descriptive patterns πP,valid ∈ ΠI,valid. A fully optimized version of
the tree depicted in Figure 3.10(a) is shown by 3.10(b). It only contains
those nodes corresponding to valid descriptive patterns. To reduce a tree
to only valid patterns or at least to reduce the amount of nodes referring
to invalid patterns, information about constraints and how they influence
each other needs to be exploited. Only recently, approaches were proposed
supporting the exploitation of arbitrary constraints utilizing a constraint
solver yet introducing considerable overhead (cf. [22]).

Based on a bottom-up, depth-first, pre-ordered search as introduced by
Section 3.1.1, there are characteristic concepts to reduce the number of invalid
patterns in a descriptive pattern search tree. Each concept identifies regions
of the descriptive pattern space, that do not need to be explored. Thus the
corresponding descriptive patterns will neither be enumerated nor checked
against constraints. Some of these concepts manifest as

• branch pruning,

• modification set pruning or

• direct modification.

Given a node, branch pruning is a way to minimize branching. This
approach is equivalent to a branch-and-bound search strategy. Before explor-
ing a branch the corresponding descriptive pattern is examined and possibly
discarded together with all its children. Figure 3.11 shows an appropriate
example of the pruning effect. To be able to discard a branch, it must be
guaranteed, that every descriptive pattern associated with a child of that
branch are rendered invalid by some (not necessarily the same) constraint.

Example 3.3 (Branch Pruning: Minimal Price).
Let φprice : I → R

+ be the item property introduced in Example 2.6 associating
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(a) Invalid descriptive patterns.
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(b) Tree resulting from removing invalid descrip-

tive patterns.

Figure 3.10: Descriptive pattern search trees : one depicting invalid descrip-
tive patterns as gray nodes and one showing the same tree with all the invalid
descriptive patterns removed.
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Figure 3.11: Based on the bottom-up search tree from Figure 3.2(a) branch
pruning is being illustrated here. Upon branching on b the descriptive pattern
{b} is rendered invalid and the corresponding subtree is skipped. 3.2.1).



3.2. Optimizations 49

each item with a price. And let cprice≥t be the price constraint from the same
example. Let

φprice(a) = 6

φprice(b) = 1

φprice(c) = 1

φprice(d) = 1

Looking at Figure 3.11 and given the constraint cprice≥7 starting at node
∅ the branch based on a modification by b is considered. π{b} is an in-
valid pattern cprice≥7(π{b}) = 0, thus it is discarded. Furthermore the maxi-
mal sum of prices of any extensions of π{b} is also smaller than seven, i.e.
cprice≥7(π{b,c,d}) = 0. Thus the whole branch together with its children can be
discarded. Note that the branches based on c and d will also be discarded.

Modification set pruning refers to the possibility to minimize the modi-
fication set EP of a descriptive pattern πP , thus recursively minimizing the
branching possibilities of each of its extension πP ′ ∈ E+

P . The modification
set EP represents all items i, that are not part of the current descriptive pat-
tern (i.e. i 6∈ P ), but may occur in some extension π′P ∈ E+

P (i.e. i ∈ P ′). If
an item can be removed from the modification set of the current descriptive
pattern, then no descriptive pattern, being a child of the current node, can
contain that item anymore. The effect of modification set pruning is illus-
trated by Figure 3.12. An example for a constraint enabling modification set
pruning is given by Example 3.4.

Example 3.4 (Modification Set Pruning: Maximal Price).
Let φprice : I → R

+ be the item property introduced in Example 2.6 associating
each item with a price. And let cprice<t be defined analogously to cprice≥t from
the same example. Let

φprice(a) = 6

φprice(b) = 1

φprice(c) = 6

φprice(d) = 1

Looking at Figure 3.12 and given the constraint cprice<10, at node {a}
the price is at 6. Adding c would raise the price sum to 12, rendering any
descriptive pattern containing both a and c invalid. As a result c can be



50 CHAPTER 3. Search

∅
{a,b,c,d}

{d}
∅

{c}
{d}

{c,d}
∅

{b}
{c,d}

{b,d}
∅

{b,c}
{d}

{b,c,d}
∅

{a}
{b,c,d}

{a,d}
∅

{a,c}
{d}

{a,c,d}
∅

{a,b}
{c,d}

{a,b,d}
∅

{a,b,c}
{d}

{a,b,c,d}
∅

Figure 3.12: Item c is removed from the modification set E{a} of node {a}
resulting in the corresponding child being pruned. Item c is also removed
from every child’s modification set. Thus subtrees dependent on c are not
only removed at the current node, but also at all corresponding children.
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pruned from the modification set E{a} = {b, c, d} resulting in the pruning as
shown in the figure.

Note 3.4 (Branch Pruning and Modification Set Pruning).
Removing an item from the modification set of a descriptive pattern prunes
all its extensions based on the current node, which contains that item. This
includes direct children, i.e. branches. As a result modification set pruning
subsumes branch pruning. Yet pruning a branch does not limit the set items
used for extension by other branches. Thus it is not equivalent to modification
set pruning. As mentioned in Note 3.3 a branching set can be defined along-
side a modification set. See Example 3.3 for a situation were a constraint
can be used for branch pruning but not for modification set pruning.

Direct modification discards all possible branches and directly extends
a descriptive pattern by a subset of the current modification set. Figure
3.13 shows the effect of this pruning method and Figure 3.14 shows how the
remodeled search tree would look like. Example 3.5 lists a pattern constraint,
that can be used for direct modification. For direct modification it is necessary
to derive that certain items from the modification set have to be part of any
extension of descriptive pattern. Otherwise some (not necessarily the same)
constraint would render the extension invalid.

Example 3.5 (Direct Modification: Minimum Price).
This example uses the same constraint as Example 3.4. Let φprice : I → R

+

be the item property introduced in Example 2.6 associating each item with a
price. Let cprice≥t be the constraint from the same example. Let

φprice(a) = 1

φprice(b) = 6

φprice(c) = 6

φprice(d) = 1

Looking at Figure 3.13 and given the constraint Cprice≥12, at node ∅ it
can be concluded, that no descriptive pattern πP can surpass threshold t ≥ 12
without containing both, item b and item c. Thus both items can be directly
added to the descriptive pattern. Figure 3.13 shows which children are ac-
cessed directly. The tree can also be rebuilt by modifying the current descrip-
tive pattern and adjusting the corresponding modification set. The result is
depicted by Figure 3.14. Note that this method is not restricted to the root
node.
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Figure 3.13: This figure illustrates direct child access. Instead of visiting
every child along a path, child nodes further down the according subtree
are accessed directly if the nodes in between only yield invalid descriptive
patterns. Here only descriptive patterns πP containing {b, c} ⊆ P are valid.
Thus extensions containing {b, c} can be accessed directly. These extensions
are {a, b, c} and {b, c}. The white nodes are explored, the gray nodes are
skipped. Direct child access is not restricted to starting at the root node as
in this example.
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∅
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Figure 3.14: This figure shows how the search tree from Figure 3.13 is mod-
ified, when modifying the tree based on direct child access by adding {b,c}
directly to the empty descriptive pattern ∅.

Note that exploiting the structure of the search as well as properties of the
constraints often needs special processing besides checking patterns against
constraints (see Example 3.3): the sum of all items in the modification set
has to be calculated to derive the necessary information for skipping the
branch. Information about the structure and status of the search can be
utilized. While there exist approaches that support exploitation of any kind
of constraint to some degree (cf. [22]), the following section will focus mainly
on anti-monotone constraints, which can be used for branch and modification
set pruning simply by checking patterns against constraints. To illustrate
how synergies can be exploited, but also how extra processing is needed,
is demonstrated by a property called ExAnte (cf. [12]), which uses anti-
monotone constraints in synergy with monotone constraints for modification
set pruning.

Note 3.5 (Constraint Context).
By definition the evaluation of patterns by pattern constraints does not de-
pend on search specific parameters like e.g. the modification set. If it would,
different search strategies could yield different solutions, even if overall only
one solution exists. Consider a descriptive pattern mining instance, where
the only solution is the set of all valid descriptive patterns. The item order is
not globally fixed and can be different at every node without yielding a differ-
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ent overall result. It is possible to use a search strategy where the item order
differs only at a single node. While the children of that node and their corre-
sponding descriptive patterns stay the same, their modification sets differ. If
a constraint would depend on modification sets, those different search strate-
gies could yield different solutions for the same descriptive pattern mining
instance.

Anti-monotone constraints

Anti-monotone constraints are constraints that allow to deduce that any
extension πP ′ of a descriptive pattern πP is rendered invalid if πP itself is
rendered invalid. This notion is formalized by Definition 3.4. Theorem 3.1
proofs that the frequency constraint introduced by Example 2.4 is an anti-
monotone constraint.

Definition 3.4 (Anti-Monotone Constraint).
Given an arbitrary data record set S ∈ ΩD and a descriptive pattern πP on
D, a constraint c is called anti-monotone, if

∀ P ′ ⊆ P : (c(πP , S) = 1) ⇒ (c(πP ′, S) = 1)

or equivalently

∀ P ′ ⊇ P : (c(πP , S) = 0) ⇒ (c(πP ′, S) = 0)

Theorem 3.1 (Anti-Monotonicity of the Frequency Constraint).
The frequency constraint cfreq≥t as introduced in Example 2.4 and modified
to fit descriptive pattern mining is anti-monotone:

cfreq≥t : Π× ΩD → {0, 1}

(πP , S
′) 7→

{

1, if |S ′πP
| ≥ t

0, else

Proof. Let S = (R, δ) be a data record set and let φI be an I-item projector.
Given Definition 2.4 and 2.9, the projection SπP

of a descriptive pattern πP

is defined
SπP

= ({i ∈ R | P ⊆ φI(δ(i))}, δ)

then by Theorem 2.2 an extension πP ′ of πP , i.e. P ⊆ P ′, projects on a
smaller data record subset than πP , i.e. the frequency of the extension πP ′ of
πP is smaller than or equal to the frequency of πP :

|SπP
| ≥ |SπP ′ |
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individual items
1 a c
2 a c d
3 a c d
4 b

Table 3.1: A transaction data record set, showing only the items an individual
is associated with.

and consequently any extension πP ′ of πP is rendered invalid by the frequency
constraint cfreq≥t, if πP is rendered invalid:

(cfreq≥t(πP , S) = 0) ⇒ (cfreq≥t(πP ′ , S) = 0)

Note 3.6 (Anti-monotonicity and Itemset Mining).
The concept of anti-monotone constraints is strongly incorporated into item-
set mining as one of the first papers about itemset mining introduced the fre-
quency constraint (cf. [4]). The frequency constraint itself is anti-monotone
as shown by Theorem 3.1. Other instances of anti-monotone constraints are
introduced for itemset mining (for instance by [12, 24]).

Anti-monotone constraints can be used for branch pruning. Based on
the bottom-up search tree, any branch of a descriptive pattern πP yields
extensions πP ′ of the current descriptive pattern, i.e. P ⊆ P ′. Thus if an anti-
monotone constraint renders a descriptive pattern invalid, it will also render
all its extensions invalid. Thus upon checking a branch and rendering the
corresponding descriptive pattern invalid by a anti-monotone constraint, that
branch can be discarded. Figure 3.15 shows the effect of a descriptive pattern
π{b} being rendered invalid by an anti-monotone constraint. Example 3.6
gives a concrete example based on the frequency constraint. The algorithm
shown in Listing 3.9 is extended to exploit the anti-monotone property by
branch pruning and depicted by Listing 3.12.

Example 3.6 (Anti-Monotonicity: Support Threshold).
Let csupp≥2 be the support / frequency constraint as refined by Theorem 3.1.
Consider the transaction data record set from Table 3.1.

The descriptive pattern π{b} is rendered invalid by csupp≥2, i.e. csupp≥2(π{b}) =
0, because the conditional data record set based on π{b} is not large enough,
i.e. |Sπ{b}

| < 2. In other words the descriptive pattern π{b} does not pass the
support threshold. Because the frequency constraint is anti-monotone, the
branch based on b is discarded according to the concept of branch pruning.
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Figure 3.15: Using the bottom-up search tree from Figure 3.2(a), this figure
illustrates branch pruning as used by the branch-and-bound paradigm. For
example let node {b} be pruned by an anti-monotone constraints, then the
whole subtree dependent on {b} can be discarded. The nodes with a gray
background also represent invalid patterns πP , if {b} was pruned using an
anti-monotone constraint, because {b} ⊆ P .
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Listing 3.12: Bottom-up descriptive pattern discovery based on modification
sets generated using item orders, branching orders and an append function
exploiting anti-monotone constraints by branch pruning.

1 VARIABLES:
2 Πvalid ← ∅
3 S // set implicitly
4 CΠI

// set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, I)
8 return Πvalid

9

10 PROCEDURE patternDiscoveryrec(P,EP ) :
11

12 f o ra l l i ∈ EP do

13 P ′ ← P ∪ {i}
14

15 i f (πP ′ , S) s t a t i s f i e s a l l anti-monotone cΠI
∈ CΠI

do

16 i f (πP ′ , S) s t a t i s f i e s a l l cΠI
∈ CΠI

do

17 Πvalid ← Πvalid ∪ {πP ′}
18 endif

19

20 EP ′ ← {j | j ∈ EP ∧ oI
P
(j) < oI

P
(i)} // modification set generation

21 ca l l patternDiscoveryrec(P ′, EP ′)
22 endif

23 endfor

Other descriptive patterns containing the item b will also be rendered invalid
according to Theorem 2.2, which is indicated by gray nodes in the figure.

In Figure 3.15 the descriptive pattern π{b} was rendered invalid by an anti-
monotone constraint. Thus any extension πP ′ of the descriptive pattern π{b}
is also rendered invalid and not only those based on the corresponding modi-
fication set E{b}, i.e. the children of π{b}. The nodes with a gray background
in Figure 3.15 represent those descriptive patterns. Thus the item b can be
removed completely from the modification set E∅ of the current descriptive
pattern π∅. The consequence is a reduction of any modification set derived
from the current one. As a result a better exploitation of anti-monotone
constraints is possible by using modification set pruning.

Figure 3.12 shows the resulting pruning effect. The algorithm in Listing
3.13 shows the general procedure of modification set pruning and the algo-
rithm in Listing 3.14 exploits anti-monotone constraints by applying that
procedure. Instead of checking each branch as it is traversed, the modifica-
tions based on the items from the modification set are checked before visiting
any branch. The corresponding items are removed from the modification set
of the current descriptive pattern if an anti-monotone constraint renders the
associated modification invalid. This reduces the modification set and with
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Listing 3.13: Modification set pruning.
1 PROCEDURE modsetPruning(P,EP , C, S) :
2 f o ra l l i ∈ EP do

3 P ′ ← P ∪ {i} // generate modification
4 i f (πP ′ , S) does not s t a t i s f y a l l anti-monotone c on s t r a i n t s c ∈ C do

5 EP ← EP \ {i}
6 endif

7 return EP

8 endfor

it any modification set derived from it. Note that branch pruning based on
anti-monotone constraints becomes obsolete as stated by Note 3.4.

Note 3.7 (Anti-Monotone Constraints: Limits of Modification Set Pruning).
Modification set pruning exploits the properties of anti-monotone constraints
more than just branch pruning does. It removes extensions of a descriptive
pattern which is rendered invalid. It still cannot totally prevent the generation
of all extension of the pruned descriptive pattern as Figure 3.16 shows: based
on the anti-monotonicity of the constraint rendering the extension {b, c} in-
valid, {a, b, c} and {a, b, c, d} could also be rendered invalid immediately. Yet
modification set pruning is limited to pruning those extensions that are cre-
ated based on the current descriptive pattern and its modification set, i.e. it
is limited to its children.

ExAnte

[13] introduces monotone constraints (see Definition 3.5) as constraints which
work the opposite way compared to anti-monotone constraints. If a descrip-
tive pattern πP is rendered invalid by a monotone constraint, then all the
descriptive patterns πP ′ associated with a subset of items P ′ ⊆ P are also
rendered invalid. Thus any parent of a descriptive pattern in the search tree is
rendered invalid, if any of its children is rendered invalid. As the bottom-up
search grows descriptive patterns, i.e. creating extensions, monotone con-
straints are not directly applicable to pruning as anti-monotone constraints
are. Figure 3.17 illustrates how monotone constraints influence the struc-
ture of the search space. Direct exploitation would involve keeping track of
already found descriptive patterns rendered invalid by some (not necessarily
the same) monotone constraint. See Example 3.7 for an example.

Definition 3.5 (Monotone Constraint).
Given any data record set S ∈ ΩD and a descriptive pattern πP on D, a
pattern constraint c is called monotone, if

∀ P ′ ⊇ P : (c(πP , S) = 1) ⇒ (c(πP ′,S) = 1)
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Figure 3.16: The anti-monotonicity property is used for modification set
pruning. The item c is pruned from the modification set of the descriptive
pattern {b}. Modification set pruning does not directly cover the removal of
the descriptive patterns {a, b, c} and {a, b, c, d} which can be deduced to be
invalid due to the anti-monotonicity property of the constraint.
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Listing 3.14: Bottom-up descriptive pattern discovery based on modification
sets generated using item orders, branching orders and an append function
exploiting anti-monotone constraints by branch pruning.

1 VARIABLES:
2 R← ∅
3 S // set implicitly
4 CΠI

// set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, I)
8 return R
9

10 PROCEDURE patternDiscoveryrec(P,EP ) :
11

12 EP ← modsetPruning(P,EP , CΠI
, S)

13

14 // branching
15 f o ra l l i ∈ EP do

16 P ′ ← P ∪ {i} // generate modification
17

18 i f (πP ′ , S) s t a t i s f i e s a l l cΠI
∈ CΠI

do //
19 R← R ∪ {πP ′}
20 endif

21

22 EP ′ ← {j | j ∈ EP ∧ oI
P
(j) < oI

P
(i)} // modification set generation

23 ca l l patternDiscoveryrec(P ′, EP ′)
24 endfor

or equivalently

∀ P ′ ⊆ P : (c(πP , S) = 0) ⇒ (c(πP ′, S) = 0)

Example 3.7 (Monotone Constraint: Minimal Price).
Let φprice : I → R

+ be the item property introduced in Example 2.6 associating
each item with a price. Let cprice≥t be the constraint from the same example.
cprice≥t is obviously monotone. Let furthermore

φprice(a) = 6

φprice(b) = 9

φprice(c) = 1

φprice(d) = 1

Looking at Figure 3.17 and given the constraint cprice≥9 the descriptive
pattern π{a,c,d} and all its parents are pruned by cprice≥9. Because of the con-
straint’s monotonicity any generalization of π{a,c,d} is invalid. Pattern π{c} is
associated with the modification set E{c} = {d}. Thus any extension of π{c} is
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Figure 3.17: Patterns corresponding to {a}, {a, c} and {a, c, d} are found,
yet rendered invalid by a monotone constraint. Thus any subset of {a, c, d} is
invalid, too, which results in {a, d}, {c} and its subtree as well as {d} being
discarded.
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a generalization of π{a,c,d}. Consequently the subtree associated with π{c} can
be skipped resulting in branch pruning based on monotone constraints. Note
that this requires keeping track of patterns pruned by monotone constraints
and also checking against them. Thus this type of pruning requires more in-
formation than just the results of evaluating constraints independently. See
Notes 3.8 and 3.9 for further details.

Note 3.8 (Monotone Pruning: Efficiency).
As mentioned before, monotone pruning needs to keeps track of descriptive
patterns that were rendered invalid by monotone constraints, which costs ad-
ditional space. Furthermore the pruning method introduced by Example 3.7
requires to check the current descriptive pattern against every monotonically
pruned descriptive pattern to allow for pruning, which costs additional time.

Note 3.9 (Anti-Monotone and Monotone Trade-Off).
Other work often mentions some kind of trade-off between monotone and
anti-monotone pruning (cf. [12, 13, 23, 34, 11]). Using monotone con-
straints for pruning as in Example 3.7 also illustrates a trade-off. For mono-
tone pruning it is favorable to know descriptive patterns associated with a
lot of items pruned by monotone constraints. The more items, the higher
the chance, that another descriptive pattern and its extensions based on its
modification set are subsets of the descriptive pattern pruned by a mono-
tone constraint. Yet anti-monotone constraints will skip all extensions of a
descriptive pattern if it is rendered invalid by an anti-monotone constraint.
Thus pruning anti-monotonically might skip descriptive patterns potentially
pruned by monotone constraints, which could be used for monotone pruning.

Note 3.8 and 3.9 reason against exploiting monotone constraints. Never-
theless, there is another method to exploit a class of monotone constraints,
i.e. monotone description constraints (see Definition 2.16), which has been
reported to be efficient [12, 10]. The property that is exploited is called
the ExAnte property. The ExAnte property is based on two other properties
inherent to anti-monotone data constraints and monotone description con-
straints. Those properties are stated by Theorem 3.2 and 3.3 respectively.

The ExAnte property (see Definition 3.4, below) exploits both properties
and enables modification set pruning.

Definition 3.6 (Data Consistent Data Record Subset).
Let S be adata record set and S ′ data record subset, i.e. S ′ ⊆ S. S ′ is called
data consists (with respect to S) if and only if

∀r ∈ S, r′ ∈ S ′ : δ(r) = δ(r′) ⇒ r ∈ S ′
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In other words, if an individual r′ associated with a data instance δ(r′) is part
of the data record subset S ′, then any individual r from the data record set
associated with the same data instance δ(r) = δ(r′) is also part of the data
record subset r ∈ S ′.

Note that a data record subset S ′′ ⊆ S ′, which is data consistent with
respect to S ′, is also data consistent with respect to S. Also if S ′′ ⊆ S ′ is
data consistent with respect to S, it is also data consistent with respect to
S ′. As a result any conditional data record set based on a pattern is data
consistent because projections are based on data instances.

Theorem 3.2 (Anti-monotone Consistency).
Let S be a data record set and let S ′′ ⊆ S ′ ⊆ S be data record subsets of S.
Let furthermore S ′ and S ′′ be data consistent. Then S ′′ is rendered invalid if
S ′ is rendered invalid by an anti-monotone data constraint ca,data, i.e.

(ca,data(S
′, S) = 0) ⇒ (ca,data(S

′′, S) = 0)

Proof.

• Case S ′ = S ′′: The theorem is obviously true for S ′ = S ′′.

• Case S ′ 6= S ′′: Proof by contradiction: assume that the theorem stated
is not true. Then an anti-monotone constraint ca,data and two data
consistent data record subsets S ′, S ′′ ⊆ S of S = (R, δ : X → D) with
S ′′ ⊆ S ′ exist, so that

(ca,data(S
′, S) = 0) ∧ (ca,data(S

′′, S) = 1)

Because S ′ 6= S ′′ there exist data instances d ∈ D, that occur in S ′ but
not in S ′′. Let D′′ be the set of these data instances :

D′′ = {d ∈ D | (∃r ∈ S ′ : δ(r) = d) ∧ (∀r ∈ S ′′ : δ(r) 6= d)}

and let furthermore D′ denote the data instances occurring in S but
not in S ′:

D′ = {d ∈ D | (∃r ∈ S : δ(r) = d) ∧ (∀r ∈ S ′ : δ(r) 6= d)}

Now let φ{a,b} be an {a, b}-item extractor defined as follows:

φ{a,b} : ΩD → 2I

d 7→











{c} , d ∈ D′

{a, b} , d ∈ D′′

{a} , otherwise
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Thus {a, b} ⊇ {a} and

Sπ{a,b}

data consistency
= S ′′

Theorem 2.2

⊆ S ′
data consistency

= Sπ{a}

and using the anti-monotone property of ca,data:

ca,data(Sπ{a}
, S) = ca,data(S

′, S) = 0

Definition 3.4⇒ ca,data(Sπ{a,b}
, S) = ca,data(S

′′, S) = 0

Thus S ′′ is also rendered invalid by ca,data, which is a contradiction to
the assumption, that the theorem is false. 	

Definition 3.7 (Monotone Description Projection).
Let S = (R, δ) be a data record set and πP a descriptive pattern with the
associated modification set EP . Let furthermore φI be an I-item projector and
Cm,desc be a set of monotone description constraints. Then the data record

set S
Cm,desc
πP is called monotone description projection and is defined as

S
Cm,desc
πP = ({r ∈ Sπ | ∀c ∈ Cm,desc : c(φI(δ(r)) ∩ (P ∪ EP )) = 1}, δ)

A monotone description projection only contains those data records that are
associated with itemsets (limited to those items corresponding to the current
descriptive pattern and its modification set) that pass all monotone descrip-
tion constraints. Note that a monotone description projection is data con-
sistent with respect to S, as the projection filtering data records is based on
their data instances.

Theorem 3.3 (Monotone Description Consistency).
Let Cm,desc be a set of monotone description constraints, let πP be a descrip-
tive pattern and EP its modification set. If an extension πP ′ of πP based on
EP (i.e. P ′ ∈ E+

P ) is not rendered invalid by a monotone description con-
straint, it projects onto a data record set SP ′ that is a subset of the monotone

description projection S
Cm,desc
πP of πP , i.e.

∀P ′ ⊆ P ∪ EP : (∀c ∈ Cm,desc : c(πP ′) = 1) ⇒ SπP ′ ⊆ S
Cm,desc
πP

Proof. Proof by contradiction: SπP ′ ⊆ SπP
by definition, thus if the theorem

stated was false, then SπP ′ , with ∀c ∈ Cm,desc : c(πP ′) = 1, contains a data
record (r, δ(r)) that is associated with a set of items φI(δ(r)) limited to those
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items in P ∪ EP , that is rendered invalid by some monotone description
constraint cm,desc ∈ Cm,desc, i.e.

∃r ∈ SP ′ : cm,desc(φI(δ(r)) ∩ (P ∪ EP )) = 0

Yet because SπP ′ is a projection of πP ′ onto S and πP ′ is an extension of πP

based on its modification set EP it holds

P ′ ⊆ φI(δ(r)) ∩ (P ∪ EP )

and because of the monotonicity of cm,desc

cm,desc(P
′) = 0

which is a contradiction to the assumption 	.
Theorem 3.4 (ExAnte).
Let M = ((D, I, φI, CΠI

, CR), S) be a descriptive pattern mining instance
with S = (R, δ) and let Cm,desc ⊆ CΠI

be the set of all monotone description
constraints and Ca,data ⊆ CΠI

the set of all anti-monotone data constraints .
Let πP be a descriptive pattern and let EP be its associated modification set.
Let πP ′ denote an extension of πP based on the modification set EP and on
a specific item i ∈ EP , i.e. i ∈ P ′. The ExAnte property states that

(ca,data(S
Cm,desc
πP ∩ SπP∪{i}

, S) = 0) ⇒ (∃c ∈ CΠI
: c(πP ′, S) = 0)

Proof. There are two cases:

1. S
Cm,desc
πP ∩ SπP∪{i}

= SπP∪{i}
: in this case the same anti-monotone con-

straint ca,data that rendered πP invalid, renders πP ′ invalid, i.e.

P ∪ {i} ⊆ P ′ ⇒ ca,data(SπP ′ , S) = 0

2. S
Cm,desc
πP ∩ SπP∪{i}

6= SπP∪{i}
: in this case again two cases have to be

distinguished:

(a) SπP ′ ⊆ S
Cm,desc
πP : SπP ′ and S

Cm,desc
πP are both data consistent with

respect to S. Thus by Theorem 3.2 the same anti-monotone con-

straint ca,data that rendered S
Cm,desc
πP ∩ SπP∪{i}

invalid, renders πP ′

invalid, i.e. ca,data(SπP ′ , S) = 0.

(b) SπP ′ 6⊆ S
Cm,desc
πP : in this case Theorem 3.3 states that a monotone

description constraint cm,desc exists, that renders πP ′ invalid.
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Listing 3.15: µ-Reduction.
1 PROCEDURE µ− reduction(πP , EP , Cm,desc, S) :
2 for r ∈ S do

3 P ′ ← φI(δ(r)) ∩ (P ∪ EP )
4

5 i f P ′ does not s a t i s f y a monotone d e s c r i p t i o n con s t r a i n t c ∈ Cm,desc then
6 S ← S \ {r}
7 endif

8 endfor

9

10 return S

By definition the ExAnte property can be applied tomodification set prun-
ing. If an extension πP∪{i} of a descriptive pattern πP by an item i ∈ EP from
the correspondingmodification set EP does not satisfy an anti-monotone data

constraint based on the union of the monotone description projection S
Cm,desc
πP

and the projection of the extension SπP∪{i}
, the item i ∈ EP used for exten-

sion can be removed from the modification set EP of the current descriptive
pattern πP . Note that removing items from the modification set EP influ-

ences the monotone description projection S
Cm,desc
πP . Thus the process can be

repeated to prune further items.

If a temporary data record set St is pictured, the modification set pruning
based on the ExAnte property can be split into two steps as introduced by
[12]: the µ-reduction and the α − reduction. Initially the temporary data
record set is equal to the conditional data record set SπP

based on πP , i.e.
St = SπP

.

The µ-reduction sets the temporary data record set to the monotone de-

scription projection S
Cm,desc
πP based on the current descriptive pattern depen-

dent on the modification set EP (i.e. it removes data records reducing the
data record set using the monotonicity property, thus the nameµ-reduction).
Listing 3.15 shows the corresponding algorithm.

Afterwards the α-reduction checks each extension πPi
with Pi = P ∪

{i}, i ∈ EP against every anti-monotone data constraint ca,data ∈ Ca,data.

If an extension πPi
is rendered invalid (ca,data(S

Cm,desc
πP ∩ SπPi

, S) = 0) the
respective item i ∈ EP is removed from the modification set. The Listing 3.16
shows the corresponding algorithm. Note that α-reduction is very similar to
modification set pruning, but only checks anti-monotone data constraints.

If some item i ∈ EP was removed the process can be restarted for fur-
ther pruning as the modification set has changed. Example 3.8 illustrates
the modification set pruning step based on the ExAnte property. Listing 3.17
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Listing 3.16: α-Reduction.
1 PROCEDURE α− reduction(πP , EP , Ca,data, S) :
2 f o ra l l i ∈ EP do

3 P ′ ← P ∪ {i} // generate modification
4

5 i f (πP ′ , S) does not s t a t i s f y a l l anti-monotone data c on s t r a i n t s c ∈ Ca,data do

6 EP ← EP \ {i}
7 endif

8 endfor

Listing 3.17: ExAnte loop.
1 PROCEDURE exAnte(πP , EP , C, S) :
2 St ← SπP

3 do

4 St ← µ− reduction(πP , EP , C, St)
5 EP ← α− reduction(πP , EP , C, St)
6 while EP has changed
7 return (EP , St)

shows the ExAnte loop and Listing 3.18 shows an algorithm which exploits
the ExAnte property based on the algorithm from Listing 3.13 replacing mod-
ification set pruning by ExAnte exploitation (note that normal modification
set pruning and ExAnte can be used in combination).

Example 3.8 (Modification Set Pruning Exploiting the ExAnte Property).
This example is based on the example from [12]. The constraints being used
are the support constraint csupp≥ts, which is a anti-monotone data constraint
and the price constraints cprice≥tp, which is an monotone description con-
straint. The support threshold is ts = 4 and the price threshold is tp = 45.
Figure 3.18 shows an example of how ExAnte reduces data record set and the
modification set. The current descriptive pattern πP is arbitrary, the initial
modification set is EP = {a, b, c, d, e, f, g, h}. Note any table in this example
only shows those items that are part of the current modification set. Table
3.18(a) shows the initial data record set ExAnte is applied to (not that Ta-
ble 3.18(a) contains items not passing the support threshold; this does not
happen, if general modification set pruning is applied first, which includes
checking anti-monotone data constraints). The first µ-reduction removes in-
dividual 4 as is does not pass the price threshold (Table 3.18(b)). The first
α-reduction removes items a, e, g and h from the modification set indicated by
removing them from the table yielding Table 3.18(c). This reduces the items
associated with each individual lowering their price sum. Thus the second
µ-reduction removes individuals 2, 7 and 9. This results in lower supports
for b, d and g. Consequently the second α-reduction removes item g from the
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items support after
item price start 1stµ 1stα 2ndµ 2ndα 3rdµ 3rdα
a 5 4 3 - - - - -
b 8 7 7 7 4 4 4 4
c 14 5 5 5 5 5 4 4
d 30 7 7 7 5 5 4 4
e 20 4 3 - - - - -
f 15 3 3 - - - - -
g 6 6 5 5 3 - - -
h 12 2 2 - - - - -

Table 3.2: Information about items including supports for different ExAnte
states according to the data record set in Figure 3.18.

modification set. The third µ-reduction yields a fixpoint by removing individ-
ual 5. In this example the data record set as well as the current modification
set are reduced by more than half.

Note 3.10 (ExAnte and Data Structures).
Instead of creating a conditional data record set from scratch at each node, a
subsequently refined data record set can be maintained. The ExAnte property
can be used to keep this conditional data record set as small as possible by
replacing it by the corresponding monotone description projection.

3.2.2 Dynamic Constraints

Dynamic constraints are a generalization of pattern constraints that incor-
porate information about result constraints (which are usually reserved for
solution discovery) into pattern discovery. Especially when generating a solu-
tion during pattern discovery this can be very efficient. Dynamic constraints
exploit information about the search to evaluate patterns during pattern dis-
covery. Information that can be exploited includes

• a generatively build solution,

• already found patterns in general or

• modification sets of already found patterns.

. This section will focus on dynamic constraints that only take into account
the generatively build solution (see Section 3.1.2). These dynamic constraints
are called generative constraints as introduced by Definition 3.8. A generative
constraint is illustrated by Example 3.8.
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individual items total price
1 b,c,d,g 58
2 a,b,d,e 63
3 b,c,d,g,h 70
4 a,e,g 31

5 c,d,f,g 65
6 a,b,c,d,e 77
7 a,b,d,f,g,h 76
8 b,c,d 52
9 b,e,f,g 49
(a) Initial data record set.

individual items total price
1 b,c,d,g 58
2 a,b,d,e 63
3 b,c,d,g,h 70
5 c,d,f,g 65
6 a,b,c,d,e 77
7 a,b,d,f,g,h 76
8 b,c,d 52
9 b,e,f,g 49

(b) Data record set after first µ-reduction.

individual items total price
1 b,c,d,g 58
2 b,d 38

3 b,c,d,g 58
5 c,d,g 50
6 b,c,d 52
7 b,d,g 28

8 b,c,d 52
9 b,g 14

(c) Data record set after first α-reduction.

individual items total price
1 b,c,d,g 58
3 b,c,d,g 58
5 c,d,g 50
6 b,c,d 52
8 b,c,d 52

(d) Data record set after second µ-
reduction.

individual items total price
1 b,c,d 58
3 b,c,d 58
5 c,d 44

6 b,c,d 52
8 b,c,d 52

(e) Data record set after second α-
reduction.

individual items total price
1 b,c,d 52
3 b,c,d 52
6 b,c,d 52
8 b,c,d 52

(f) Data record set after third µ-
reduction.

Figure 3.18: Data record set being pruned using the ExAnte property with a
support threshold of ≥ 4 and a price threshold of ≥ 45. The bold font depicts
items and data records to be removed. For item information see Figure 3.2.



70 CHAPTER 3. Search

Listing 3.18: Bottom-up descriptive pattern discovery based on modification
sets generated using item orders, branching orders and an append function
exploiting anti-monotone constraints by branch pruning.

1 VARIABLES:
2 R← ∅
3 S // set implicitly
4 CΠI

// set implicitly
5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, I)
8 return Πvalid

9

10 PROCEDURE patternDiscoveryrec(P,EP ) :
11

12 (EP , S)← exAnte(P,EP , CΠI
, S) // prunes EP

13

14 // branching
15 f o ra l l i ∈ E′

P do

16 P ′ ← P ∪ {i} // generate modification
17

18 i f (πP ′ , S) s t a t i s f i e s a l l cΠI
∈ CΠI

do //
19 R← R ∪ {πP ′}
20 endif

21

22 EP ′ ← {j | j ∈ EP ∧ oI
P
(j) < oI

P
(i)} // modification set generation

23 ca l l patternDiscoveryrec(P ′, EP ′)
24 endfor

Definition 3.8 (Generative Constraint).
Given a set of patterns Π and a data domain D, a generative constraint

cG is a constraint on Π× ΩD × 2Π:

cg : Π× ΩD × 2Π → {0, 1}

Note 3.11 (Dynamic Constraints: Consistency).
Dynamic constraints must be designed to be consistent with the result con-
straints, i.e. using dynamic constraints must yield a solution if a solution
exists. For example generative constraints cannot render patterns invalid
that turn out to be needed for the solution as the search progresses. As a
pattern is not enumerated twice, such a pattern is lost and no solution can
be generated.

Note 3.12 (Dynamic Constraints: Properties).
Dynamic constraints can have the same properties as normal pattern con-
straints, such as being a data or description constraint or being anti-monotone
or monotone as long as they are consistent with the result (see Note 3.11).
Example 3.9 lists an anti-monotone generative constraint.
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Example 3.9 (Generative Constraint: Maximal Support).
The goal is to find two descriptive pattern with maximal support, i.e. the
descriptive pattern mining instance

M = ((D, I, φI , CΠI
, CR), S)

is defined using

• S as defined by Table 3.19(a)

• I = {a, b, c}

• φI also as defined by Table 3.19(a)

• CΠI
= ∅

• CR = {cR,max2}, with cR,max2 defined as

cR,max2 : 2ΠI × ΩD → {0, 1}

(R, S) 7→
{

1, |R| = 2 ∧ ∀π ∈ R, π′ ∈ ΠI \R : |Sπ| ≥ |Sπ′|
0, otherwise

Instead of using a combination of pattern discovery and solution discovery,
a generative approach as introduced in Section 3.1.2 can be taken by defining
an append function αmax2 and a generative constraint cΠ,max2. The append
function αmax2 for generating the solution during pattern discovery is defined
as

αmax2 : ΠI × Ωδ × 2ΠI → 2ΠI

(πP , S, R) 7→







(R ∪ {πP}) \ {argmin
π∈R

(|Sπ|)} , |R| = 2

R ∪ {πP} , otherwise

The corresponding generative constraint cΠ,max2 is defined accordingly as

cΠ,max2 : ΠI × ΩD → {0, 1}

(πP , S) 7→
{

1, |R| < 2 ∨ |SπP
| > min{|Sπ| : π ∈ R}

0, otherwise

Note that cΠ,max2 is equivalent to the frequency constraint (3.1) with a dy-
namically raising threshold based on the patterns that were found so far, thus
it is anti-monotone.
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Now, consider the search tree in Figure 3.19(b). The algorithm for gen-
erative solution discovery is based on Listing 3.14 assuming a global reversed
lexical item order and a and a global lexical branching order. As the solution
R is empty to begin with, the dynamic support threshold t is zero, i.e. t = 0.
The search starts at the root node. No item is pruned by modification set
pruning because any extension π{i} (with i ∈ E∅) exceeds the threshold of
t = 0. The algorithm proceeds stepwise:

• The first item from the modification set to branch on is “a”, yielding the
descriptive pattern π{a}. π{a} is added to the result because no patterns
are in the result yet. The threshold stays at t = 0. Thus again, no item
is pruned from the corresponding modification set E{a}.

• Recursively the first item b ∈ E{a} is used for extension, yielding the
descriptive pattern π{a,b}. π{a,b} is added to the result, because the tem-
porary result does not contain two patterns yet. The temporary result
is now R = {π{a,b}, π{a}}. Consequently the dynamic threshold is now
t = 1 because |Sπ{a,b}

| = 1.

• The only item c ∈ E{a,b} is pruned by modification set pruning because
of the generative constraint cΠ,max2.

• The search then backtracks to the node corresponding to pattern π{a}
and adds the next (and last) item c ∈ E{a} to π{a} yielding π{a,c}, which
is added to the result, because it exceeds the current dynamic threshold
t = 1. The temporary result is then R = {π{a,b}, π{a,c}} and the dynamic
threshold is raised to t = 2.

• The search then backtracks to the root node and adds the second item
from E∅ yielding the descriptive pattern π{b}, which exceeds the current
dynamic threshold and is added to the temporary result, which is then
R = {π{a,b}, π{b}}. The dynamic threshold is raised to t = 3. All items
in the corresponding modification set E{b} are pruned.

• The last extension π{c} is not added to the result, because it does not
exceed the current dynamic threshold t = 3.

The final solution is R = {π{a,b}, π{b}}. Figure 3.19(b) depicts skipped de-
scriptive patterns by a gray background.

Early Adding

When using dynamic constraints it cannot be assumed that a pattern will
always be rendered valid by all constraints just because it was rendered valid
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Items
1 a b c
2 a c
2 a
6 b
6 b
7 b

(a) The data

record set.

∅

{c}
|Sπ{c}

| = 2

{b}
|Sπ{b}

| = 4

{b,c}
|Sπ{b,c}

| = 1

{a}
|Sπ{a}

| = 3

{a,c}
|Sπ{a,c}

| = 2

{a,b}
|Sπ{a,b}

| = 1

{a,b,c}
|Sπ{a,b,c}

| = 1

(b) The search tree.

Figure 3.19: Shows a data record set and a corresponding search tree based
on the set of items I = {a, b, c}.

once. For generative constraints for example, the evaluation might change
with every pattern being added to the solution being built. Thus there are
several places in the algorithm based on e.g. Listing 3.14 where dynamic
constraints can be rechecked in order to increase efficiency. Checking more
often can be costly, thus a trade-off is introduced. Listing 3.19 shows an
algorithm using additional checking of dynamic constraints. By additionally
utilizing the procedure of Listing 3.20 another optimization is introduced.
By adding descriptive pattern not when actually branching but before any
branch is considered, more information is available to dynamic constraints
thus more efficient pruning is possible (also see Algorithm 3.7 and 3.8). Fig-
ure 3.20 shows the resulting search tree from Example 3.9 depicting the
skipped descriptive patterns as gray nodes. Overall less descriptive patterns
are enumerated to generate the same solution.

3.2.3 Data Structures

There are two factors that are costly during pattern discovery in descriptive
pattern mining :

• the enumeration of an exponentially growing set of descriptive patterns
with respect to the amount of items and

• the projection of the pattern πP onto the data record set S in order to
evaluate constraints (e.g. data constraints).
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Listing 3.19: Bottom-up descriptive pattern discovery based on modification
sets generated using item orders adding patterns early to exploit dynamic
constraints.

1 VARIABLES:
2 R← ∅
3 S
4 CΠI

5

6 PROCEDURE patternDiscovery(I, CΠI
, S) :

7 ca l l patternDiscoveryrec(∅, I)
8 return R
9

10 PROCEDURE patternDiscoveryrec(P,EP ) :
11

12 EP ← modsetPruning(P,EP , CΠI
, S) // prunes EP

13 R← earlyAdding(P,EP , CΠI
, S,R) // adds patterns before branching

14

15 // here a second modification set pruning loop using dynamic anti-monotone constrains
16 // can exploit additional patterns added to the solution during early adding
17

18 // branching
19 f o ra l l i ∈ E′

P do

20 P ′ ← P ∪ {i} // generate modification
21

22 // check dynamic anti-monotone constraints again
23 i f (πP ′ , S) does not s t a t i s f y a l l dynamic anti-monotone c on s t r a i n t s c ∈ CΠI

do

24 continue

25 endif

26

27 EP ′ ← {j | j ∈ EP ∧ oI
P
(j) < oI

P
(i)} // modification set generation

28 ca l l patternDiscoveryrec(P ′, EP ′)
29

30 // at this point modification set pruning based on
31 // dynamic anti-monotone constraints could be applied
32 // for modification set pruning again
33 endfor

Listing 3.20: Adding descriptive patterns early.
1 PROCEDURE earlyAdding(P,EP , CΠI

, S,R) :
2 f o ra l l i ∈ E′

P do

3 P ′ ← P ∪ {i} // generate modification
4

5 i f (πP ′ , S) s t a t i s f i e s a l l c o n s t r a i n t s cΠI
∈ CΠI

do

6 R← α(πP ′ , S,R)
7 endif

8 endfor

9

10 return R
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∅

{c}
|Sπ{c}

| = 2

{b}
|Sπ{b}

| = 4

{b,c}
|Sπ{b,c}

| = 1

{a}
|Sπ{a}

| = 3

{a,c}
|Sπ{a,c}

| = 2

{a,b}
|Sπ{a,b}

| = 1

{a,b,c}
|Sπ{a,b,c}

| = 1

Figure 3.20: A search tree for a set of items I = {a, b, c}. The gray nodes
depict descriptive constraints, that were not traversed.

The former was is addressed by the previous section exploiting properties of
constraints to avoid enumerating invalid descriptive patterns. The latter will
be elaborated on in this section.

When checking descriptive patterns against constraints like data con-
straints, the corresponding conditional data record set is required (see Defi-
nition 2.15). Creating such projections from scratch is expensive when data
record sets are large. As an alternative Lemma 2.1 states that it is possible
to maintain a subsequently refined conditional data record subset according
to the current descriptive pattern. Furthermore it is not necessary to grant
access to the actual conditional data record set, but merely to a few selected
valuation bases if pattern constraints are defined on valuation bases as sug-
gested by 2.3.

Given a descriptive pattern πP different valuation bases are required de-
pendent on the algorithm. Common valuation bases to require are

• the valuation basis φV (SπP
) of the current descriptive pattern πP or

• the valuation bases φV (SπP∪{i}
) of extensions πP∪{i} of the current de-

scriptive pattern πP based on its modification set EP , i.e. i ∈ EP .

In the previous sections every algorithm requires the latter. Thus instead of
maintaining a conditional data record set for a descriptive pattern a reduced
conditional data record set is sufficient. A reduced conditional data record set
contains only those individuals which will be part of an extension πP∪{i} of
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the current descriptive pattern πP and its modification set EP , i.e. i ∈ EP .
In other words they only contain individuals r associated with a set of items
φI(δ(r)) which contains an item from the modification set EP ∩φI(δ(r)) 6= ∅.
Figure 3.21(a) and 3.21(b) highlight the differences between conditional data
record sets and reduced conditional data record sets. Definition 3.9 introduces
reduced conditional data record sets formally.

Definition 3.9 (Reduced Conditional Data Record Set).
Given a data record set S = (R, δ), a descriptive pattern πP and an I-item
projector φI , a reduced conditional data record set S−πP

is defined as

S−πP
= ({r ∈ Sπ | φI(δ(r)) ∩ EP 6= ∅}, δ)

where EP is the modification set of πP .

Until now, the actual data record subsets are used to access valuation
bases. But it is also possible to transform data record sets such that only
the absolutely necessary information is being stored, which is the valuation
bases. Such a data record set is coined component data record and specified
by Definition 3.10. It associates each individual with a data instance con-
taining an itemset component and a valuation basis component. The former
corresponds to the items an individual was originally associated with and the
latter corresponds to the associated valuation basis. This representation is
used instead of the original data record set representation to limit the stored
data to a minimum.

Definition 3.10 (Component Data Record Set).
Given a data record set S = (R, δ), an I-item projector φI and a V -valuation
basis projector φV , the corresponding component data record SV is spec-
ified on the data domain DV = 2I × V as

SV = (R, δV : R → D)

with δV being defined as

δV : R → 2I × V

r 7→ (φI(δ(r)), φV (δ(r)))

Let d = (I ′, v), d ∈ DV be a data instance from the data domain DV , then I ′

is called itemset component and v is called valuation basis component

of d.
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(a) Conditional data record sets for each descriptive pattern.
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(b) Reduced conditional data record sets for each
descriptive pattern.

Figure 3.21: Conditional data record sets and reduced conditional data record
sets for each descriptive pattern. Descriptive patterns and their modifica-
tion sets divided by a colon are shown above each corresponding (reduced)
conditional data record set. Only the items associated with individuals are
depicted and not the data instances. Reduced data record sets only show those
items part of the current modification set. Empty projections are depicted
as crossed out squares. Only the first pattern projecting onto an empty data
record set is shown.
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individual data instance
id1 d1
id2 d2
id3 d3
id4 d4

items valuation basis
a, c, d v1
e, g v2
b, f v3
d, e, g v4

items valuation basis
g v2
b, f v3
g v4

items valuation basis
g v2 ⊕ v4
b, f v3

φI , φV

P = {a}
EP = {b, f}

compression

Figure 3.22: This figure depicts the general process of creating a component
data record set from a data record set (upper left to upper right). It also
shows how the reduced conditional component data record set according to
the descriptive pattern π{a} and its modification set EP is calculated (upper
right to lower right). A possible merging step is also depicted (lower right
to lower left). The identifiers for individuals are not explicitly listed for the
component data record sets.

Now, as descriptive patterns select individuals by their associated set of
items, those data records with equal itemset components can be merged.
Furthermore given a descriptive pattern πP and its modification set EP , only
items i ∈ EP need to be retained in the item components of the correspond-
ing conditional reduced component data record set SV

P for the same reason.
Figure 3.22 depicts the general process of creating a component data record
set, projecting it onto a conditional reduced component data record set and
merging data records with the same itemset components.

Finally, let SV
P be a reduced conditional component data record set of a de-

scriptive pattern πP . It supports all operations required by the optimizations
introduced by previous sections:

• atomic valuation basis extraction: given an item i ∈ EP , the valuation
basis φV (SπP∪{i}

) can be extracted by iterating over SV
P and accumu-

lating all valuation bases associated with data instances containing the
item i.

• ExAnte support :
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– µ-reduction: let (r, δ(r)) be a data record from the current condi-
tional data record set and let Im = φI(δ(r))∩(P ∪EP ). If a mono-
tone description constraint cm renders Im invalid (cm(Im) = 0),
then the corresponding data record is removed from the condi-
tional data record set. Such a data record is part of a potentially
merged data record (r′, (I ′, v)) from the corresponding reduced
conditional component data record set. The required itemset Im is
equivalent to Im = P ∪ I ′.

– α-reduction: to represent reductions in the modification set EP ,
the pruned items can be removed from each itemset component of
the current reduced conditional component data record set

• atomic sequential projection: to calculate the next reduced conditional
component data record set SV

P∪{i} all data records not containing i in
their itemset component are removed. Also, only items from the new
modification set are retained in the itemset components. Data records
with empty itemset components are removed. To create a maximally
compressed data record set the itemset components of each data record
need to be compared. Data records with the same itemset component
are merged. This last step is usually not applied to avoid the cost of
pairwise comparing the data records accepting the larger size of the
resulting conditional component data record set.

To address the issue of generating maximally compressed conditional com-
ponent data record sets by atomic sequential projection the notion of GP-
Trees can be used as introduced by the next section.

GP-Tree

The FP-Tree structure was introduced by [33] in the context of frequent
itemset mining. The FP-Tree consists of a prefix tree based on some order of
items and an item table. The item table contains all items that occur in the
tree. Each node of the prefix tree represents an item. The nodes representing
the same item are linked. The head of such a link structure is stored in the
item table together with the corresponding item for identification. The FP-
Tree of a data record set or a conditional data record set is built by iterating
over each data record of the data record set sorting the associated items
(limited to those, part of the modification set) by the order defined by the
tree and inserting the sorted list of items into the prefix tree. If a new node
needs to be generated during the insertion, the link structure between nodes
representing the item is adjusted accordingly.
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For frequent itemset mining each node contains a frequency count. Each
individual is associated with a frequency f (usually f = 1 in the initial data
record set). If a node is created its count is initialized with the frequency
associated with the data record that provided the items to be inserted into
the tree. If a node already exists, the frequency of the data record being
inserted is added to the frequency count of the existing node. Figure 3.23(b)
shows an FP-Tree based on the data record set depicted by Figure 3.23(a).
The data domain is the powerset 2I of items I. In this case the order on
the items to build the tree is f > c > a > b > m > p according to their
frequencies. Figure 3.23(c) shows the first few steps of building the FP-Tree
from Figure 3.23(b). These examples are based on [33].

Note 3.13 (Compactness).
The item order oI for sorting the items influences the compactness of a FP-
Tree greatly. [33] mentions that using a frequency order is a good heuristic
to yield rather compact FP-Trees (items with a higher frequency are closer
to the root). Yet it is also emphasized that in some cases more compact trees
exist as Figure 3.24 illustrates.

Instead of just the frequency, any valuation basis can be stored and ac-
cumulated at the tree nodes, generalizing the data structure. The tree is
then called a GP-Tree (generic pattern tree). Figure 3.23 shows how the
component data record set is used as input for creating the FP-Tree. Thus,
GP-Trees can be built from arbitrary component data record sets.

Now, let πP be the current descriptive pattern and EP is modification
set. Also let SV

P be the current reduced conditional component data record
set. Instead of calculating the reduced conditional component data record set
SV
P∪{i} for an extension πP∪{i} based on EP directly from SV

P , S
V
P is converted

into a GP-Tree representation based on the item order oIP imposed on the
current modification set EP . Now SV

P∪{i} can be calculated by iterating over
all GP-Tree nodes associated with i. These nodes can quickly be accessed
by the link structure between nodes with the same item. For each node a
data record is added to the new reduced conditional component data record
set SV

P∪{i}: the item component being those items associated with parents
of the current node, and the valuation basis component being the valuation
basis of the current node. Figure 3.25 illustrates the procedure.

Note 3.14 (Item Order and Modification Set).
Note that the item order to build the GP-Tree must be identical with the
item order to build modification sets. Otherwise the resulting component
data record sets will not be consistent with the modification set. Thus when
changing the modification set or the item order after building a GP-Tree,
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(c) Building an FP-Tree. The header table is left out. Upon adding an item, the
according header node is stored in the header table.

Figure 3.23: A FP-Tree according to a data record set and how it is build.
The data domain of the data record set is the powerset 2I of items I =
{f, a, c, b,m, p}. The order used to build the tree is f > c > a > b > m > p

according to their frequencies. The gray nodes depict the head nodes stored
in the header table.
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Figure 3.24: FP-Trees according to a data record set using different item
orders. The data domain of the data record set is the powerset 2I of items
I = {a, b, c, d, e, f}.
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Figure 3.25: GP-Tree from Figure 3.23(b) used to build a conditional com-
ponent data record set.

the tree has to be rebuilt to be able to yield consistent results. As building a
GP-Tree is expensive this has to be avoided.

The advantage of using this method to create reduced conditional compo-
nent data record sets is that it yields maximally compressed component data
record sets (with respect to the item order applied) for every conditional
component data record set created from the GP-Tree, i.e. those rows that
share the same set of items are merged (see Figure 3.22 for an example).

Note 3.15 (Storage Complexity).
Note that if the valuation bases are of constant size, GP-Trees are a very
efficient way of storing data records because data records with the same set
of items are combined in a single path of the GP-Tree and the size needed
to store the accumulated valuation basis does not grow with additional data
records sharing the same nodes. Furthermore because of the order of items
imposed when creating the GP-Tree, data records share prefixes of items.
Data records that share a prefix also share the nodes associated with it.

Yet valuation bases not being of constant size pose a problem. For exam-
ple considering the most general valuation basis storing the data instances
themselves, every node contains the data instances of the data records it is
associated with. This will introduce an exponential growth on the size re-
quirement of the tree. The GP-Tree equivalent to the FP-Tree from Figure
3.23(b) storing the data instances as valuation bases is depicted by Figure
3.26. Intelligent implementation of valuation bases can reduce this effect.
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Figure 3.26: A GP-Tree storing a multiset of data instances as valuation
basis (the most general valuation basis) based on Figure 3.23(b).
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Single Prefix Path Exploiting a single prefix path is another method to
improve the efficiency of the search. This method originates from using the
GP-Tree, but can be generalized to other data structures at the cost of ad-
ditional calculations. Given a descriptive pattern and its modification set
the general idea is to avoid creating further conditional data record sets for
corresponding extensions. Instead valuation bases calculated for the current
items from the modification set are to be reused. The conditional data record
set has to fulfill certain requirements to do so. If a single prefix path can be
extracted from the conditional data record set, the valuation bases of exten-
sions based on items associated with the single prefix path can be directly
deduced from the valuation bases of these items. The notion of single prefix
paths is introduced by Definition 3.11.

A single prefix path ESPP
P ⊆ EP is a subset of the current modification

set EP . The items i ∈ ESPP
P of the single prefix path can be ordered by the

frequency / support of their respective conditional data record sets |SπP∪{i}
|.

If an item i ∈ ESPP
P is associated with a certain frequency then its associated

conditional data record set SπP∪{i}
is a subset of those items j associated with

an equal or a higher frequency, i.e. |SπP∪{i}
| ≤ |SπP∪{j}

| ⇒ SπP∪{i}
⊆ SπP∪{j}

.
Or in other words each individual r ∈ SπP∪{i}

is associated with those items j
of higher frequency, i.e. |SπP∪{i}

| ≤ |SπP∪{j}
| ⇒ ∀r ∈ |SπP∪{i}

| : j ∈ φV (δ(r)).
At the same time the size of each conditional data record set based on an item
i ∈ ESPP

P from the single prefix path must be equal to or larger than those
based on items j ∈ EP \ ESPP

P not in the single prefix path, i.e. |SπP∪{i}
| ≥

|SπP∪{j}
|.

Definition 3.11.

[Single Prefix Path]
Let S be a data record set and πP a descriptive pattern with the modifi-

cation set EP . A subset ESPP
P ⊆ EP of the modification set is called single

prefix path if an item order oIP exists such that

∀i, j ∈ ESPP
P : |SπP∪{i}

| ≤ |SπP∪{j}
| ⇒ SπP∪{i}

⊆ SπP∪{j}

and
∀i ∈ ESPP

P , j ∈ EP \ ESPP
P : SπP∪{i}

⊇ SπP∪{j}

Table 3.27(a) shows a data record set yielding a single prefix path ESPP
P

{a, b, c} (with P = ∅ and EP = {a, b, c, d, e}). A GP-Tree structure built
upon an item order based on their frequencies results in a tree, where the
single prefix path is represented by those nodes starting at (but not including)
the root until (and this time including) the first node with more than one
branch. Figure 3.27(b) shows the GP-Tree based on the frequency item order
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according to the data record set from Table 3.27(a) using the frequency val-
uation basis. Figure 3.27(c) shows how the single prefix path cannot directly
be deduced from the GP-Tree if a different order is being used.

The consequence is two-fold:

• Let P ′ ⊆ ESPP
P be a subset of the single prefix path ESPP

P of the current
descriptive pattern πP and let πP∪P ′ be the associated extension. Let
furthermore i ∈ P ′ denote the item with the lowest frequency in the
subset P ′, i.e. ∀j ∈ P ′ : |SπP∪{i}

| ≤ |SπP∪{j}
|.

Then the conditional data record set SπP∪P ′ based on the extension
πP∪P ′ according to the subset P ′ ⊆ ESPP

P of the single prefix path
ESPP

P is equal to the conditional data record set SπP∪{i}
based on the

extension according to the item i ∈ P ′ with the lowest frequency, i.e.
SπP∪P ′ = SπP∪{i}

.

• Let P ′ ⊆ EP be a subset of the modification set EP of the current
descriptive pattern πP , with an item k ∈ P ′, that does not belong
to the single prefix path k 6∈ ESPP

P . Let furthermore i ∈ ESPP
P be

the item with the lowest frequency in the single prefix path ESPP
P , i.e.

∀j ∈ ESPP
P : |SπP∪{i}

| ⊆ |SπP∪{j}
|.

Then the conditional data record set SπP∪P ′ based on the extension
πP∪P ′ according to the subset P ′ ⊆ EP of the modification set EP is a
subset of the conditional data record set SπP∪{k}

based on the extension

πP∪{k} according to the item i ∈ ESPP
P with the lowest frequency, i.e.

SπP∪P ′ ⊆ SπP∪{i}
.

The original FP-Growth algorithms (cf. [33]) exploits both consequences
by

• first generating the powerset of the single prefix path using it to generate
descriptive patterns, i.e. every element from the powerset is used to
extend the current descriptive pattern. Afterwards all such generated
descriptive patterns are added to the result using the valuation basis of
the least frequent item for checking against constraints.

• Then the recursive search is called. Upon its return each descriptive
pattern found during the recursive search is extended by all elements
from the powerset generated during the first step and added to the
result using the valuation basis of the descriptive pattern from the re-
cursive search for checking against constraints.

This method has a few disadvantages:



3.2. Optimizations 87

individual items
1 a,b,c,d,e
2 a,b,c,d
3 a,b,c,d
4 a,b,c,e
5 a,b,c
6 a

(a) Data record set.

∅

a:6

b:4

c:4

e:1d:3

e:1

Single

Prefix

Path

(b) FP-Tree built using frequency
node order resulting in a sin-

gle prefix path. Node order:
a > b > c > d > e

∅

a:1c:1

b:1

a:1

d:2

c:2

b:2

a:2

e:2

c:1

b:1

a:1

d:1

c:1

b:1

a:1

(c) FP-Tree built using reverse frequency
node order resulting on no single prefix

path. Node order: a < b < c < d < e

Figure 3.27: FP-Trees according to a data record set using different item
orders. Using the frequency order results in a single prefix path, using the
reverse order does not. The data domain of the data record set is the powerset
2I of items I = {a, b, c, d, e}.
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• the powerset can be large and needs to be saved or generated again
when the recursive search returns

• the amount of descriptive patterns from the recursive search may be
also be large

• the anti-monotone description property is not used for pruning during
powerset creation

• descriptive patterns are not added during but after the recursive search
returns, which can lead to less efficient pruning when dynamic con-
straints are present

The former two disadvantages were irrelevant to [33], because all the
descriptive patterns were part of the solution, thus capacity to store them all
had to available anyways. The latter two were not an issue because neither
anti-monotone description nor dynamic constraints were present.

Yet for example top-k mining can render extensions based on the cached
powerset invalid, while it is still stored, thus the storage or the time to create
it, is wasted. Also top-k mining is highly dependent on which descriptive pat-
tern are added when to the result. In the more general setting of descriptive
pattern mining these issues have to be considered.

To avoid most of the issues mentioned above, exploiting the single pre-
fix path can be limited to cases, where the single prefix path ESPP

P is equal
to the modification set EP . In such case the powerset of the single prefix
path is build to create extensions of the current descriptive pattern πP . To
exploit anti-monotone constraints during this procedure a similar approach
to the usual pattern discovery approach is taken (with the exception of ex-
ploiting the ExAnte property for reasons explained in Note 3.16). The only
difference is, that instead of keeping a data structure containing data records,
the valuation bases according to each item are kept. This method exploits
the single prefix path by avoiding to generate conditional data record sets
and at the same time it can exploit anti-monotone constraints. If all anti-
monotone constraints are data constraints and no dynamic constraints are
present, creating the powerset can be done more efficiently (instead of cre-
ating it recursively). Instead of starting a recursive search, the powerset can
simply be enumerated.

Note 3.16 (Single Prefix Path and ExAnte).
ExAnte exploitation uses monotone description constraints to reduce the cur-
rent conditional data record set in order to allow anti-monotone data con-
straints to further prune items. If the single prefix path ESPP

P contains only
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items i that will yield valid extensions πP∪{i} of the current descriptive pat-
tern πP , then the item j ∈ ESPP

P with the smallest frequency already yields
a descriptive pattern πP∪{j} that is valid according to all anti-monotone con-
straints. Thus any extension πP∪P ′ using items P ′ ⊆ ESPP

P from the single
prefix path ESPP

P only yields valid descriptive patterns according to the anti-
monotone data constraints. As a result using the ExAnte exploitation to
reduce a modification set only containing items from a single prefix path will
not yield any results.

In order to exploit cases where the single prefix path is not equal to the
modification set, two approaches can be taken which will only be roughly
outlined here:

• Branching Set Pruning : remove the items of the single prefix path from
the branching set (items the current descriptive pattern is directly ex-
tended by) and enumerate their powerset exploiting anti-monotone con-
straints while using fixed valuation bases. Other than that. Proceed
normally.

• Optional Item Pushing : a set of optional items is assumed. Remove
items of the single prefix path from the modification set and add them
to the optional items. Exploit the optional items like a single prefix
path. The set of optional items is then given as an argument to the
recursive search.

Bitsets

Given a data record set S = (R, δ) and a I-item projector φI , a data structure
to efficiently store the data record sets are bitset representations as utilized
by [40]. The idea is to transform the the data record set S into a binary
table TS based on the associated items I. Each row is associated with an
item i ∈ I. Each column is associated with an individual r ∈ R. Each entry
T [k, l] is one if an item k is associated with an individual l as is defined as
follows:

T [k, l] :=

{

1, ik ∈ φI(δ(rl))

0, else

The data instance or valuation basis of an individual is linked to the column
and can be accessed. Figure 3.28 shows a data record set and its correspond-
ing bitset representation.

The bitset representation can be seen as an implementation of a reduced
component data record set. It provides the same features.
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c 1 1 0 1 1
f 1 1 1 0 1
m 1 1 0 0 1
p 1 0 0 1 1

(b) The bitset representation of the data record

set from Figure 3.28(a).

Figure 3.28: A data record set and its corresponding bitset representation.

• atomic valuation basis extraction: the valuation basis according to an
item ik is accumulated by adding up the valuation bases according to
those individuals rl being associated with that item ik, i.e. T [k, l] = 1.

• ExAnte support :

– µ-reduction: let (r, δ(r)) be a data record from the current condi-
tional data record set and let Im = φI(δ(r))∩(P ∪EP ). If a mono-
tone description constraint cm renders Im invalid (cm(Im) = 0),
then the corresponding data record is removed from the condi-
tional data record set. Such a data record is part of a potentially
merged data record (r′, (I ′, v)) represented by a column T [, l]. The
required itemset Im is equivalent to Im = P ∪ {ik|T [k, l] = 1}, if
only rows corresponding to items from the modification set exist,
otherwise T [, l] needs to be adjusted using a vector corresponding
to the items in the valuation basis.

– α-reduction: to represent reductions in the modification set EP ,
only those rows T [k, ] are retained which correspond to items ik ∈
EP in the modification set.

• atomic sequential projection: each row TS[k, ] is a binary vector associ-
ated with item ik. A component-wise AND operation (∧) on two such
vectors TS[k1, ] and TS[k2, ] returns a binary vector TS[k1∧k2] that con-
tains one-entries for all those individuals rl, that are associated with
both items ik1 and ik2 , i.e.

ik1 ∈ φI(δ(rl)) ∧ ik2 ∈ φI(δ(rl)) ⇔ {ik1 , ik2} ⊆ φI(δ(rl))
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individuals
100 200 300 400 500

it
em

s

a 1 1 0 0 1
b 0 1 1 0 0
c 1 1 0 0 1
f 1 1 1 0 1

m 1 1 0 0 1
p 1 0 0 0 1

(a) Projection based on item f .

individuals
100 200 300 500

it
em

s

a 1 1 0 1
b 0 1 1 0
c 1 1 0 1
m 1 1 0 1
p 1 0 0 1

(b) Compressed bitset representation
by removing the item used for projec-
tion and individuals that are not asso-
ciated with any remaining item (items
from the modification set).

Figure 3.29: The projection based on item f of the bitset representation from
Table 3.28(b) and the compressed version of that projection.

Thus the atomic sequential projection based on an item ik is calculated
by using the AND operation based on the vector T [k, ] on all rows.
An example is given by Figure 3.29 showing the bitset representation
of the conditional data record set Sπ{f}

by doing an atomic sequential
projection based on item f . f is not associated with individual 400,
thus every corresponding entry is set to zero. Furthermore only rows
corresponding to items from the modification set are retained. After-
wards columns only containing zeros are removed. For merging data
records columns need to be compared pairwise. If the column are iden-
tical they can be merged by removing one of them and accumulating
the corresponding valuation bases. This process is again costly.

Note 3.17 (GP-Trees).
Building a GP-Tree is expensive compared to maintaining a bitset represen-
tation of a data record set. On the other hand GP-Trees keep data record set
representations as small as possible. As a result using GP-Trees are useful
for sparse data record sets and bitset representations perform well on dense
data. It might be favorable to use a combination, if it is possible to deduce a
density measure from a data record set.



92 CHAPTER 3. Search

it
em

s

a {100, 200, 500 }
b { 200, 300, 400, }
c {100, 200, 400, 500 }
f {100, 200, 300, 500 }
m {100, 200, 500 }
p {100, 400, 500 }

Figure 3.30: The TID-Set representation of the data record set in Table
3.28(a).

Vertical

Vertical or TID-Set data record set representations keep track of individuals
dependent on items. Instead of creating a binary table, the TID-Set repre-
sentation directly keeps sets of “transaction ids (TID)”, i.e. the individuals
of data records for each item i ∈ I. Everything works just like when using
bitset representations tables with the conjunction (∩) replacing the AND
operation (∧). Instead of iterating over the whole length of a bit vector to
accumulate a valuation basis the identifiers from the resulting TID-set can
be accessed directly. Table 3.30 shows the TID-Set representation of the data
record set in Table 3.28(a).



4
Constraints

This section will introduce several common constraints known from data
mining tasks that can be expressed as (generative) descriptive pattern min-
ing classes. Those constraints will be formulated abiding by the framework
from Section 2. One subsection covers pattern constraints, the other result
constraints.

4.1 Pattern Constraints

The following sections will introduce a common way of formulating data
constraints, i.e. by the notion of quality functions. Afterwards a set of
basic descriptive pattern mining classes will be introduced abiding by the
framework defined in Section 2. Then a class of constraints is revisited that
reduces redundancy among descriptive patterns.

4.1.1 Quality Functions and Optimistic Estimates

A common way to express data constraints is by defining quality functions.
Quality functions are functions that, given a data record set, map a pattern
onto a real value as formalized by Definition 4.1. The most common quality
function is the frequency quality function mapping a pattern onto the size of
its projection as illustrated by Example 4.1. A quality function can be used
to formalize a pattern constraint by defining a threshold. A pattern is only
valid, if its quality is greater than or equal to the threshold. Such a pattern

93
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constraint is called a quality constraint and is defined by Definition 4.2. Thus,
defining a quality function and a threshold yields a pattern constraint.

Definition 4.1 (Quality Function).
Given a set of patterns Π and a data domain D, a quality function q is
defined as

q : Π× ΩD → R

Example 4.1 (Quality Function: Frequency / Support).
Given a data record set S, the frequency quality function or support

quality function qsupp is projecting a pattern π onto the size |Sπ| of its
projection Sπ:

qsupp : Π× ΩD → R

(π, S) 7→ |Sπ|

Definition 4.2 (Quality Constraint).
Given a data domain D and a set of patterns Π, as well as a quality func-

tion q : Π × ΩD → R, a quality constraint cq≥t according to a threshold
t ∈ R is defined as

cq≥t : Π× ΩD → {0, 1}

(π, S) 7→
{

1, if q(π, S) ≥ t

0, otherwise

Considering the descriptive pattern mining setting the frequency quality
constraint yielding from the frequency quality function (see Example 4.1) is
anti-monotone (cf. Theorem 3.1). Yet not every quality constraint emits
anti-monotone properties. To allow for anti-monotone pruning using a qual-
ity constraint, the corresponding quality function must be anti-monotone
itself. A quality function is called anti-monotone, if it returns a smaller or
equal value for an extension πP ′ of a descriptive pattern πP than for the pat-
tern πP itself (see Definition 4.3). Thus, any extension πP ′ of a descriptive
pattern πP which is rendered invalid by a quality constraint cq≥t using an
anti-monotone quality function q is rendered invalid, too.

Definition 4.3 (Anti-Monotone Quality Function).
Let ΠI be a set of descriptive patterns and let q : ΠI × ΩD → {0, 1} be a
quality function. Given a data record set S, q is called anti-monotone, if
and only if

∀P, P ′ ⊆ I : P ⊆ P ′ ⇒ q(πP ) ≥ q(πP ′)
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To utilize a quality function for anti-monotone pruning even though it is
not anti-monotone, an additional quality constraint based on a corresponding
optimistic estimate needs to be formulated. An optimistic estimate of a
quality function (as defined by Definition 4.4) is itself a quality function
which estimates the maximum quality the respective quality function can
still assign to an extension of a descriptive pattern (including the descriptive
pattern itself). Thus, an optimistic estimate is always anti-monotone (cf.
Theorem 4.1). If the quality q(πP , S) of a descriptive pattern πP does not
satisfy the threshold t defined by a quality constraint cq≥t, that pattern πP

is not added to the set of valid patterns ΠI,valid. If the optimistic estimate
eq(πP , S) of that quality function q does not satisfy the quality threshold t,
extensions of that descriptive pattern can be discarded. The corresponding
constraint ceq≥t is anti-monotone. Examples of optimistic estimates can be
found in Section 4.1.2 (subgroup mining and community mining).

Definition 4.4 (Optimistic Estimate).
Let q : ΠI ×ΩD → {0, 1} be a quality function. A quality function eq is called
an optimistic estimate of q, if and only if

∀P, P ′ ⊆ I : P ⊆ P ′ ⇒ e(πP ) ≥ q(πP ′)

Theorem 4.1 (Anti-Monotonicity of Optimistic Estimates).
An optimistic estimate eq of a quality function q is always anti-monotone.

Proof. Assume that eq is not anti-monotone. Then there is a pair of descrip-
tive patterns πP , πP ′ ∈ ΠI , with P ⊆ P ′ and

eq(πP ) < eq(πP ′)

Yet, because eq is an optimistic estimate of q, it is known that

e(πP ) ≥ q(πP ′)

thus also that

q(πP ′) ≤ eq(πP ) < eq(πP ′)

which is a contradiction to

eq(πP ′) ≥ q(πP ′)

resulting from the definition of an optimistic estimate 	.
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Valuation Bases

Just as pattern constraints, quality constraints can be formulated using val-
uation bases. Thus, in the context of pattern mining the same is true for
quality functions. Given a valuation domain V = (V,⊕) quality functions
are defined as

q : Π× V × V → R

where the first V represents the valuation basis vP of the evaluated pattern’s
πP projection SπP

and the second V represents the valuation basis v∅ of the
initial data record set S. Every quality function requires a characteristic
valuation domain to work on. In Example 4.2 the support quality function is
redefined accordingly.

Example 4.2 (Quality Functions and Valuation Bases).
The support valuation domain is defined as V = (N,+). The support
of a single individual is always one. The support quality function qsupp from
Example 4.1 can be reformulated using the support valuation domain:

qsupp : Π× N× N → R

(π, n, n0) 7→ n

The relative support quality function is defined as

qsupp : Π× N× N → R

(π, n, n0) 7→ n
n0

4.1.2 Descriptive Pattern Mining Classes

When the only solution of a pattern mining class is the set of all valid pat-
terns, then it can be defined by solely specifying pattern constraints. To allow
pattern constraints to be independent of the data domain of the data record
sets used as input, they are defined on valuation bases. Accordingly, a com-
patible valuation basis needs to be defined for each pattern constraint. The
different valuation bases are then either concatenated by the carthesian prod-
uct or aggregated in a more complex manner yielding a compressed valuation
domain. The following section introduces common descriptive pattern min-
ing classes by defining their characteristic set of pattern constraints based on
valuation bases using the concept of quality functions. The first class is fre-
quent pattern mining (Section 4.1.2), the second is subgroup mining (Section
4.1.2) and the third is community mining (Section 4.1.2).
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Frequent Pattern Mining

In literature, frequent pattern mining refers to finding sets of items in
a transaction database. An application is retail market basket analyzation.
The goal is to find all articles that are often bought together. Originally,
“often” means that the count of transactions, a set of items occurs in, has
to surpass a certain threshold. Thus, for frequent pattern mining the sole
constraint is the quality constraint csupp≥t based on the frequency quality
function qsupp from Example 4.2 and a support threshold t. The correspond-
ing valuation basis is

V = (N,+)

Each data instance d ∈ D is mapped onto a one. i.e. the corresponding
V-valuation basis projector is

φ : D → N

d 7→ 1

Subgroup Mining

The goal of subgroup mining or subgroup discovery is to find “inter-
esting” subgroups of individuals. It helps to identify relations between a
dependent (target) variable and usually many independent variables, e.g.
“the subgroup of 16-25 year old men that own a sports car are more likely to
pay high insurance rates than the people in the general population”, cf. [7].
It can also be used for classification [38]. The interestingness of a subgroup is
evaluated by a quality function. Common subgroup mining tasks are to find
all subgroups that are equal to or greater than a certain quality threshold
or to mine the k most interesting subgroups. The former will be introduced
here and can be extended to the latter by using the methods introduced in
Section 4.2.

Subgroup mining is defined in different ways [8, 7, 6, 56]. Yet the notion
of subgroup description is essentially the same (see Definition 4.5).

Definition 4.5 (Subgroup Description).
A subgroup description sd = {e1, e2, . . . , en} is defined by the conjunction
of a set of selection expressions. These selectors ei = (ai, Vi) are selections
on domains of attributes, ai ∈ ΩA, Vi ⊆ dom(ai). Ωsd is the set of all possible
subgroup descriptions.

With the description P ⊆ I being a subset of selectors I, the definition of
a subgroup description is equivalent to I-descriptive patterns (see definition
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2.9), with I being the set of all possible selectors (or at least all selectors
used in a particular subgroup mining instance).

While there are different target types, the most common is a binary one:
a data instance d ∈ D associated with an individual r ∈ X from a population
X can either be a positive sample, i.e. φT (d) = 1, or a negative one, i.e.
φT (d) = 0; where φT : D → {0, 1} is a function discerning positive and
negative samples according to the binary target T .

Now, given a data record set S = (R, δ), the common primitives for
quality functions based on a binary target T are (cf. [8]):

• n(S) = |S|,
count of all data instances in a data record set S

• tp(S) =
∑

i∈R

φT (δ(i)),

count of all positive data instances in a data record set S

• fp(S) =
∑

i∈R

(1− φT (δ(i))) = n(S)− tp(S),

count of all negative data instances in a data record set S

• p(S) = tp(S)
tp(S)+fp(S)

= tp(S)
n(S)

,
coverage of T by all data instances in a data record set S

The primitives fp and p can be derived from n and tp, thus they can be
subsumed by the valuation domain

V = (N× N,+)

Each data instance is associated with a zero or a one depending on being
a positive or negative example and a count of one. The V -valuation basis
projector is

φV : D → N× N

d 7→ (φT (d), 1)

Thus, a valuation basis v ∈ V for a data record set S is represented by a tuple
v = (tp(S), n(S)), holding the count of all positive data instances tp(S) and
the total count of data instances n(S).

Three exemplary quality functions are the binomial test qbin (cf. [35, 36]),
the weighted relative accuracy qWRAcc (cf. [38, 8]) and a variation of the latter,
the Piatetsky-Shapiro quality function qPS (cf. [30]).
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Definition 4.6 (Subgroup Mining: Quality Functions).
Let

p =
tp

tp+ fp
=

tp

n
, with fp = n− tp

and

p0 =
tp0

tp0 + fp0
=

tp0

n0
, with fp0 = n0 − tp0

tp0 and n0 represent the tp and p values for a reference valuation basis, i.e.
the valuation basis for the initial data record set. Then

• the binomial test quality function qbin is defined as

qbin : Π× (N× N)× (N× N) → R

(π, (tp, n), (tp0, n0)) 7→ p−p0√
p0(1−p0)

√
n
√

n0

n0−n

• the weighted relative accuracy quality function qWRAcc is defined
as

qWRAcc : Π× (N× N)× (N× N) → R

(π, (tp, n), (tp0, n0)) 7→ n
n0
(p− p0)

• and the piatetsky-shapiro quality function qPS is defined as

qPS : Π× (N× N)× (N× N) → R

(π, (tp, n), (tp0, n0)) 7→ n · (p− p0)

It is possible to derive optimistic estimates from these quality functions.
Definition 4.7 formalizes the optimistic estimate for the Piatetsky-Shapiro
quality function from Definition 4.6 [56]. This optimistic estimate is not tight
[30], i.e. the optimistic estimate of the current pattern is not necessarily equal
to the quality of one of its extensions.

Definition 4.7 (Piatetsky-Shapiro Optimistic Estimate).

ePS : Π× (N× N)× (N× N) → R

(π, (tp, n), (tp0, n0)) 7→ n · (1− p0)

Analogously valuation bases and quality functions can be formulated
when using a continuous target variables as in [5] by replacing the tp value
in the valuation basis with the sum of the values of the continuous target.
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Community Mining

A community is intuitively introduced by [6] as a “a group of individuals C
out of a population U such that members of C are densely “related” to one
another but sparsely “related” to individuals in U\C”. An example are friend
or interaction graphs defined on users of a social network. Communities
can be described by features the individuals share, e.g. tags or topics the
individuals are associated with. The task of community mining is to find
descriptions for communities that have a high quality according to some
quality function, e.g. are strongly connected, are of a certain size, etc.

These concepts are transfered into graph theory (cf. [6]). A graph is an
ordered tuple G = (U,E), where U is a set of vertices and E is a set of edges
between vertices. An undirected graph defines edges e ∈ E as subsets of U
containing exactly two elements (e ∈ E ⇒ e ⊆ U ∧|e| = 2). A directed graph
defines edges as tuples of vertices E ⊆ U × U . In both cases the notation is
(u, v) ∈ E. The degree d of a vertex is the number of (outgoing) connections
it has to other vertices, i.e. d(v) = |{(v, x) | (v, x) ∈ E}|. An adjacency
matrix A ∈ R

n×n is a binary matrix associated with a subset of vertices
U ′ ⊆ U of a graph G = (U,E) with |U ′| = n. An entry Ai,j = 1 if and only
if a connection from vertex i ∈ U ′ to vertex j ∈ U ′ exists in the set of edges
E, i.e.

Ai,j =

{

1, i, j ∈ U ′ ∧ (i, j) ∈ E

0, else

Further notations are:

• n := |U |

• m := |E|

• nC := |C|

• mC := |{(u, v) ∈ E|u, v ∈ C}|

• m̄C := |{(u, v) ∈ E|u, v 6∈ C}|

Using this formalization of communities, [6] states two quality functions
for a given community C: the inverse conductance (ICON , cf. [41]) as in-
troduced in Definition 4.8 and the modularity (MOD, cf. [43]) as introduced
in Definition 4.9. [6] also derives optimistic estimates for both functions.
The optimistic estimate of modularity is given by Definition 4.10. For the
optimistic estimate of conductance one may refer to [6].
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Definition 4.8 (Conductance).

CON(C) = m̄C

2mC+m̄C
= 1− 2mC∑

u∈C

d(u)

ICON(C) = 1− CON(C) = 2mC∑

u∈C

d(u)

Definition 4.9 (Modularity).

MOD(C) =
1

2
·

∑

i∈C,j∈C

(Ai,j −
d(i) · d(j)

2m
) =

mC

m
−

∑

i∈C,j∈C

d(i) · d(j)
4m2

Definition 4.10 (Modularity: Optimistic Estimate).

oe(MOD(C)) =

{

0.25 , if mC ≥ m
2

mC

m
− m2

C

m2 , otherwise

The data used to obtain communities descriptions is the graph G =
(U,E), that connects individuals, and a function f : U → 2I , that assigns
certain features I ′ ⊆ I to the individuals from a set of features I. Those
two data sources are merged to a data record set. Each individual in the
data record set corresponds to an edge between individuals from the graph.
The edge is furthermore associated with those features that the individuals
it connects share. Thus, the corresponding data domain D is

D = E × 2I

The problem of mining community descriptions can now be formulated
as a descriptive pattern mining instance. Let S = (R, δ) be a data record set,
where each data record corresponds to an edge with the features attached
that the corresponding individuals share. Thus, the data domain D = E ×
2I represents all possible edges together with all possible combinations of
features. Those features correspond to items in descriptive pattern mining.
The respective I-item projector φI,com is defined as

φI,com : E × 2I → 2I

((u, v), I) 7→ I

A valuation basis that can be used to calculate any of the above quality
functions needs to provide the size of the current community mC and the
degrees of all its individuals d(i). Thus, an appropriate valuation domain
can be defined as the powerset of individuals 2U in a population U . A single
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valuation basis then corresponds to the set of all individuals in a community
C ∈ 2U . Thus, the valuation domain is

V = (2U ,∪)

The matching V -valuation basis projector φV,com is defined as

φV,com : E × 2I → 2U

((u, v), I) 7→ {u, v}

The community quality functions conductance and modularity as well as
its optimistic estimate, can be reformulated as quality functions based on
valuation bases according to Section 4.1.1. Let U be the set of individuals.
Then the first instance of 2U is the individuals associated with the descriptive
pattern πP and second the instance of 2U is a reference set of individuals, i.e.
the set of all individuals U , then

qICON : Π× 2U × 2U → R

(π, U, C) 7→ 2|C|∑

u∈C

d(u)

qMOD : Π× 2U × 2U → R

(π, U, C) 7→ |C|
|U |

− ∑

i∈C,j∈C

d(i)·d(j)
4|U |2

eMOD : Π× 2U × 2U → R

(π, U, C) 7→
{

0.25 , if |C| ≥ |U |
2

|C|
|U |

− |C|2

|U |2
, otherwise

Note 4.1 (Valuation Basis Size).
The size of valuation bases grows with respect to the size of the individuals
from the graph. When using the GP-Tree data structure, the required space
grows exponentially.

4.1.3 Condensed Itemset Mining

[48, 57] state that frequent pattern mining often produces a huge number of
patterns, which reduces efficiency and effectiveness of mining. [48] also states
that approaches addressing this problem can be classified into two categories.
One is using constraints to capture the user’s focus. Works are mentioned
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that push constraints deep into the mining process [37, 44, 49]. The other
category is to explore concise representations of frequent patterns. Papers
like [50, 57, 46] are listed. While the latter category is kept separate from
the former, the search for concise representations of patterns can also be
expressed as constraints. There are quite a few algorithms for mining more
compact representation of itemsets or including them into their constraint
repository [54, 50, 59, 55, 47, 53, 22]. The more general field of computing
closure system also provides means to be applied to closed descriptive pattern
mining [28]. This section introduces a notion of closed descriptive patterns
abiding by the framework of descriptive pattern mining. Furthermore, it gives
a short overview over other condensed descriptive pattern representations.

Closed Descriptive Patterns

A descriptive pattern πP is considered closed if there exists no extension πP ′

(i.e. P ⊂ P ′) with the same support (i.e. |SπP
| = |SπP ′ ). Definition 4.11

formally states what a closed descriptive pattern is. Definition 4.12 identifies
the pattern constraint cclosed for only mining closed descriptive patterns.

Definition 4.11 (Closed Descriptive Pattern).
Given a data record set S, an I-descriptive pattern πP is called closed, if
and only if

∀ (P ′ ⊃ P ) : |SπP ′ | < |SπP
|

or given an item projector φI:

P =
⋂

i∈π̄P (S)

φI(δ(i))

Definition 4.12 (Closed Constraint).
Given a set of items I, the pattern-data constraint cclosed is defined as follows:

cclosed : ΠI → {0, 1}

πP 7→







1, if P =
⋂

i∈π̄P (S)

φI(δ(i))

0, otherwise

The closed constraint can also be formulated in terms of valuation bases.
The corresponding valuation domain is

V = (2I ,∩)
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The valuation basis for a single individual is equivalent to the items it is as-
sociated with. Thus, given an I-item projector φI the respective V-valuation
basis projector φV is

φV,closed : D → 2I

d 7→ φI(d)

The reformulated pattern constraint based on the valuation domain V =
(2I ,∩) is

cclosed : ΠI × 2I × 2I → {0, 1}

(πP , P
′, P0) 7→

{

1, if P = P ′

0, otherwise

As a result the closed constraint can be easily incorporated in any descriptive
pattern mining class. But note that the size of such valuation bases generally
grows with respect to the number of items in the data record set. Thus,
the situation is similar to using the most general valuation basis based on
multisets of data instances (see Section 2.3). For the GP-Tree data structure
the required space grows exponentially. Additionally, the valuation domain
is based on the union of itemsets. This operation can be expensive when
used often.

As is, the closed constraint is not anti-monotone. Yet frequent itemset
mining algorithms exist, that exploit other properties of closed descriptive
patterns to optimize closed descriptive pattern mining. The TFP algorithm
(cf. [54]) mainly uses two optimizations:

• item merging : upon encountering a descriptive pattern πP and its mod-
ification set EP , all items i ∈ EP that yield extensions πP∪{i} with the
same support (i.e. |SπP

| = |SπP∪{i}
|) are removed from the modifica-

tion set EP and directly added to the descriptive pattern πP . This
yields a new descriptive pattern πP∪P ′, where P ′ = {i ∈ EP : |SπP

| =
|SπP∪{i}

|}. Any extension without these items would be rendered in-
valid by the closed constraint cclosed. This type of search space pruning
was introduced by Section 3.2.1 as direct modification.

• prefix-itemset skipping : the current descriptive pattern πP is checked
against every closed descriptive pattern, that was already found. If a
closed descriptive pattern πP ′ is found that is a superset of the current
descriptive pattern πP (i.e. P ⊆ P ′) and has the same support (i.e.
|SπP || = |SπP ′ |) then πP and all its extensions are discarded. Prefix-
itemset skipping can be formulated as an dynamic anti-monotone con-
straint thus supporting branch pruning and modification set pruning.



4.1. Pattern Constraints 105

The former can be applied directly to the more general setting of descriptive
pattern mining in combination with the closed constraint to speed up the
search.

Prefix-itemset skipping is a more subtle matter and cannot be used for de-
scriptive pattern mining in general without either using the closed constraint
or limiting the pattern constraint types to be used. Item merging and prefix-
itemset skipping were designed to work together without relying on the closed
constraint. It is assumed that not all closed descriptive patterns are stored
for prefix-itemset skipping to check against, but only those rendered valid
with respect to the other constraints (otherwise it would be equivalent to
first search for all closed descriptive patterns and the filter them with respect
to the other constraints). This requires a restriction to data constraints and
monotone description constraints, because some arbitrary constraint might
render a closed descriptive pattern invalid which is needed for prefix-itemset
skipping. In such a scenario it is possible that descriptive patterns are added
to the result which are not closed. If only data constraints and monotone
description constraints exist, then any reduction πP ′ of a discarded pattern
πP with the same support (|SπP

| = |SπP ′ |) is either rendered invalid by the
same constraint the closed descriptive pattern πP was.

While storing all closed descriptive patterns, valid or not, is not an op-
tion, storing more of them can be an advantage: the more closed descriptive
patterns are stored to check against, the more opportunities for search space
pruning exist by virtue of prefix-itemset skipping. On the other hand, keeping
the set of closed descriptive patterns to check during prefix-itemset skipping
small is essential as each stored pattern needs to be compared to the newly
created one. The TFP algorithm addresses this issue reducing the amount
of closed descriptive patterns to check against by requiring a globally fixed
item and branching order. This method is not favorable if the performance
of the search depends on specialized item or branching orders (for example
when using branching orders based on optimistic estimates, see Section 4.2).
Furthermore, restricting the constraint types will restrict the respective al-
gorithm to a subclass of descriptive pattern mining. As an alternative to
these restrictions and in order to take advantage of the optimizations prefix-
itemset skipping offers, nevertheless, the closed constraint can be used to
ensure the correctness of the results. Yet, this comes at the cost of more
complex valuation bases as was mentioned before.

Note 4.2 (Interpretation of Closed Itemsets).
Closed descriptive pattern can be interpreted in different ways when combined
with other constraints. One way is formalized by Definition 4.11: a descrip-
tive pattern πP is considered closed if if there exists no extension πP ′ (i.e.
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P ⊂ P ′) with the same support (i.e. |SπP
| = |SπP ′). Another way to in-

terpret closed descriptive patterns is to define them with respect to the other
constraints. In other words, a descriptive pattern πP is considered closed, if
there exists no valid extension πP ′ (i.e. P ⊂ P ′) with the same support, i.e.
|SπP

| = |SπP ′ |; where “valid” refers to all but the closed constraint.

Other Condensed Descriptive Pattern Representations

There are other condensed descriptive pattern types. A more general version
of the closed and the maximal descriptive patterns are δ-closed descriptive
patterns [21, 22] as formalized by Definition 4.13. Closed descriptive patterns
are 0-closed descriptive patterns.

Definition 4.13 (δ-Closed Descriptive Pattern).
Given a data record set S, an I-descriptive pattern πP is called closed, if

∀ (P ′ ⊃ P ) : |SπP ′ | < (1− δ) · |SπP
|

Another condensed descriptive pattern type are maximal descriptive pat-
terns [9] as introduced by definition 4.14. While any reduction of a maximal
descriptive patterns is frequent their extensions are not. Thus, maximal
descriptive patterns constitute a border between frequent and infrequent de-
scriptive patterns (cf. [22]).

Definition 4.14 (Maximal Descriptive Pattern).
Given a data record set S and a frequency threshold t, a I-descriptive pattern
πP is called maximal, if

∀ (P ′ ⊃ P ) : |SπP ′ | < t

It is to be evaluated if maximal and δ-closed descriptive pattern mining
can utilize anything but the most general valuation domain of multisets of
data instances (see Section 2.3).

Other condensed representations like free [14, 15], simple disjunction-free
[16, 17] and non-derivable [18] itemsets exist that are used to estimate or
calculate the frequency of given itemsets, i.e. answer frequency queries [20].
[20] also mentions a unifying framework of the mentioned representations
(cf. [19]). Further studies might help to integrate these approaches into the
domain of descriptive pattern mininig or the other way around.

4.2 Result Constraints

Result constraints are constraints that restrict the solutions of a pattern
mining instance beyond generating the set of all valid patterns. One example
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are coverage constraints [22]. An instance is given by Example 3.2 which does
not allow a generative approach to solution discovery. Other result constraints
such as top-k mining do. Top-K mining is always associated with a quality
function as introduced in Section 4.1.1. There are several interpretations of
top-k mining. Let Πvalid = {π1, π2, π3} be a set of valid patterns and let their
qualities be defined as q(π1, S) = 2, q(π2, S) = 2 and q(π3, S) = 1, then

• one interpretation of top-k mining is finding a set R of k valid patterns
such that no other valid pattern exists that has a higher quality than
any of the patterns in the set, i.e. for top-1 mining R1 = {π1} and
R2 = {π2} are solutions.

• A variation of the first interpretation is finding a tuple (R,X), where
R is a set of k valid patterns such that no other valid pattern exists
that has a higher quality than any of the patterns in the set R and
X contains all patterns with a quality equal to the least quality in R,
i.e. the solution of top-1 mining is (R1, X1) = ({π1}, {π1, π2}) and the
solution of top-2 mining is (R2, X2) = ({π1, π2}, ∅).

• Another interpretation of top-k mining to find a set of patterns with
the top k highest qualities, i.e. for top-1 mining R = {π1, π2} is the
only solution.

The former is by definition not well-defined. Several solution can exist. The
latter two define a single solution. Nevertheless, the former solution is re-
viewed in the remainder of this section as it specifies a definite number of
patterns in the solution guaranteeing a compact result. The other two tok-k
mining variants cannot assure such a bound.

To formulate top-k mining in the context of generative solution discovery
an append function α must be defined. The append function αk for top-k
mining is introduced by Definition 4.15.

Definition 4.15 (Append Function: Top-k and top-k̄ mining).
Given a quality function q : Π× ΩD → R, let

qmin(R, S) := argmin
π∈R

(q(π, S))

Then the append function αk for top-k mining is defined as

αk : Π× ΩD × 2Π → 2Π

(π, S, R) 7→











R ∪ {π} , |R| < k

(R \ {qmin(R, S)}) ∪ {π} , q(qmin(R, S)) < q(π, S)

R , otherwise
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Just like quality functions append function can also be defined using the
concept of valuation bases. Yet note that it is necessary to either store
the quality of the patterns in the solution being built or the corresponding
valuation basis to calculate the associated qualities in order to be able to
derive the minimum quality in the current result.

4.2.1 Dynamic Threshold

So far quality constraints (see Section 4.1.1) have defined a static threshold.
In combination with top-k mining such a threshold can be raised dynamically.
The result are generative constraints (see Section 3.2.2). Such a constraint
takes the the solution into account, that is being generated by using an
append function. Upon reaching the size limit k the threshold is set to the
lowest quality in the current solution. Only patterns with a higher quality
will be added to the solution. Generative quality constraints based on top-k
mining are formalized in Definition 4.16.

Definition 4.16 (Generative Quality Constraints).
Given a solution R being built by a append function α and a quality function
q, then a generative quality constraint is a pattern constraint defined as

c>R : ΠI × ΩD → {0, 1}

(πP , S) 7→
{

1, if q(π, S) > min
π∈R

(R, S)

0, otherwise

Just like quality constraints, generative quality constraint can be anti-
monotone and consequently favor branch or modification set pruning. As the
append function already takes care of building the correct solution, generative
quality constraint are solely used for pruning. If a quality function used by a
top-k append function is not anti-monotone, it is possible to use its optimistic
estimate to formulate a generative quality constraint.

When using a generative quality constraints for anti-monotone pruning
the efficiency of a search highly depends on the order in which patterns are
being added. The sooner patterns with a high quality are added, the faster
the threshold raises and consequently the search space can be pruned in
larger quantities. A heuristic to speed up threshold raising is to define the
branching order oBP (see Section 3.1.1) for each descriptive pattern πP based
on the optimistic estimate e(πP∪{i}) of the extension πP∪{i} corresponding
to the items i ∈ EP in the modification set EP . The higher the optimistic
estimate, the sooner the branch based on the corresponding item i is explored.
This heuristic is mentioned in literature (cf. [5, 56]).



5
Implementation

This chapter initially describes the actual algorithm being implemented in-
corporating many features introduced in Chapter 3 and 4. The second part
of this chapter deals with technical details and how the framework (Chapter
2) used to formulate the algorithm is implemented.

5.1 The AnEMonE Algorithm

Chapter 3 and Chapter 4 introduce many concepts and optimizations. The
algorithm actually implemented tries to cover as many as possible while
allowing a reasonable spectrum of configuration, i.e. which optimizations are
to be enabled or disabled. The algorithm is based on bottom-up, depth-first,
pre-ordered search as introduced in Section 3.1. The “baseline” algorithm is
given by Listing 5.1. First all implemented features are described. Optional
features are highlighted. The algorithm in Listing 5.1 id coined AnEMonE
for Anti-Monotone, ExAnte and Modification Set Exploitation. It has the
following features:

• explicit usage of a combination of component data record sets and GP-
Trees (see Section 3.2.3),

• exploiting the single prefix path (see Section 3.2.3): limited to GP-
Trees that are single prefix paths, i.e. trees only containing nodes with
a single child,

• modification set pruning based on anti-monotone constraints (see Sec-
tion 3.2.1),

109
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• exploiting the ExAnte property (see Section 3.2.1): as part of the mod-
ification set pruning procedure and

• early adding (see Section 3.2.2): as part of the modification set pruning
procedure.

Listing 5.1: The AnEMonE algorithm.
1 VARIABLES:
2 R // result
3 v∅ // valuation basis of the initial data record set
4 CΠI

// all pattern constraints, implicitly set by initial call
5 oI // used to derive item order; implicitly set by initial call
6 oB // used to derive branching order; implicitly set by initial call
7 α // append function; implicitly set by initial call
8 CA // anti-monotone pattern constraints
9 CD // dynamic pattern constraints

10

11 PROCEDURE anemone(CΠI
, oI , oB, α, S, φI , φV ) :

12 R← ∅
13 CA ← extractAntimonotoneConstraints(CΠI

)
14 CD ← extractDynamicConstraints(CΠI

)
15

16 (P,EP , SπP
, v∅)← createComponentDataRecordSet(S, φI , φV )

17 (EP , SπP
)← modificationSetPruning(P,EP , SπP

) // including: earlyAdding, exAnte
18 ca l l anemonerec(P,EP , SπP

)
19 return R
20

21 PROCEDURE anemonerec(P,EP , SπP
) :

22 oI
P
← oI(P,EP , SπP

, v∅) // derive item order
23 oBP ← oB(P,EP , SπP

, v∅) // derive branching order
24

25 T ← buildGPTree(SπP
, oIP )

26 (EP , T )← exploitSinglePrefixPath(EP , T ) // only if the tree IS a single prefix path
27

28 EP []← sort(EP , oB
P
) // set branching order

29 for i ∈ EP [] do // branching abiding by branching order
30 P ′ ← P ∪ {i} // create extension
31 vP ′ ← getConditionalV aluationBasis(SπP

, i)
32 i f !isV alid(P ′, vP ′ , v∅, CA ∩ CD) do // additional branch pruning (only dynamic constraints)
33 continue

34 endif

35

36 EP ′ ← getConditionalModificationSet(EP , oIP , i)
37 SπP ′ ← getConditionalComponentDataRecordSet(T, i)
38 (EP ′ , Sπ

P ′ )← modificationSetPruning(P ′, EP ′ , Sπ
P ′ ) // including: earlyAdding, exAnte

39 ca l l anemonerec(P ′, EP ′ , SπP ′ )
40 endfor

The algorithm from Listing 5.1 is called by invoking the

anemone(CΠI
, oI , oB, α, S, φI, φV )

procedure (Line 11). It requires several input values:



5.1. The AnEMonE Algorithm 111

• CΠI
, a set of pattern constraints (see Section 2.2 and Section 4.1.1

for pattern constraints based on valuation bases); note that pattern
constraints can be generative (see Section 3.2.2),

• oI , a function able to derive an item order oI(P,EP , SπP
) = oIP (see

Section 3.1.1) based on the current descriptive pattern πP , its modifica-
tion set EP , the associated data structure SπP

and the valuation basis
v∅ of the initial data record set,

• oB, a function able to derive a branching order oB(P,EP , SπP
) = oBP

(see Section 3.1.1 based on the current descriptive pattern πP , its mod-
ification set EP , the associated data structure SπP

and the valuation
basis v∅ of the initial data record set,

• α, an append function as defined in Section 3.1.2,

• S = (R, δ : X → D), the initial data record set on a data domain D

(see Section 2),

• φI , an I-item projector on data domain D (see Section 2.1.1) and

• φV , an V -valuation basis projector on data domain D and valuation
domain V = (V,⊕) according to the pattern constraints in CΠI

(see
Section 2.3).

The called anemone procedure (Line 11) first initializes the result R, and
extracts anti-monotone and dynamic constraints from the given constraints
CΠI

. Some of the input arguments are implicitly stored in the global variables
with the same name. Line 16 prepares the initial descriptive pattern P (or
rather its associated itemset), its modification set EP , the corresponding
component data record set SπP

and the valuation basis v∅ of the initial data
record set Sπ∅

. Here the initial descriptive pattern P is the empty descriptive
pattern P = ∅. Note at this point, that the Anemone algorithm does not
(as of yet) support arbitrary data structures, but relies on a combination of
component data records and the GP-Tree structure as introduced in Section
3.2.3. The following line prunes the generated modification set (see Section
3.2.1) including early adding (see Section 3.2.2) and the exploitation of the
ExAnte property (see Section 3.2.1). Three minor modifications might be
interesting at this point

• incorporate the procedure

modificationSetPruning(P,EP , SπP
)
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into
createComponentDataRecordSet(S, φI , φV )

This allows the exploitation of the ExAnte property to be applied to
the initial data record set S. Thus the initial component data record
set SπP

can be kept smaller. Also sharing other information might be
favorable.

• skip further processing altogether if the initial descriptive pattern πP

does not satisfy some anti-monotone constraints

• add the empty descriptive pattern π∅ to the result if it satisfies every
pattern constraint c ∈ CπI

Line 18 finally calls the recursive search. Afterwards the built solution R is
returned.

The recursive search is represented by the procedure

anemonerec(P,EP , SπP
)

Its arguments are

• P , the itemset associated with the current descriptive pattern πP ,

• EP , the (not pruned and not sorted) modification set EP of the current
descriptive pattern πP and

• SπP
, the component data record set (see Section 3.2.3) according to the

current descriptive pattern πP .

While other recursion layouts are possible (see Note 5.1), the anemonerec
procedure begins with preparing the branching loop by deriving item and
branching order according to the current descriptive pattern P , its modifica-
tion set EP and the corresponding component data record set SπP

(to have
access to the valuation bases vπP∪{i}

of extensions πP∪{i} used to derive an
order on the items i ∈ EP ). The GP-Tree structure is being used, thus a
common item order is the descending frequency order. When using quality
functions a common branching order is based on the optimistic estimates of
the extensions corresponding to items to sort. The next step is to prepare
for the generation of conditional component data record sets by creating the
GP-Tree T from the current component data record set by using the derived
item order oIP . If the GP-Tree generated is a single prefix path, i.e. only
contains nodes with a single child, it is exploited. Other exploitations of the
single prefix path are possible, but not implemented here (see Section 3.2.3).
Then the pruned modification set is sorted and used for the branching loop.
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Note 5.1 (Recursion Layout).
There are two prominent alternative recursion layouts besides the one chosen
in the AnEMonE algorithm (see Listing 5.1).

• One is to start the recursion with the branching loop without prepara-
tions, i.e. move Lines 22 through 28 to right before Line 39. Thus the
inner loop is taking care of branching preparation such as modification
set pruning, branching order, etc. before calling the recursion. This
was avoided to keep the initial anemone(...) procedure as well as the
the arguments passed to anemonerec(...) simpler.

• The other prominent layout is to relocate all preparation done in the
branching loop located before the recursive call towards the beginning
of the recursion, i.e. moving Lines 30 through 38 to right after Line
21. The disadvantage of this approach is that the conditional data like
component data record set and valuation basis need to be extracted at the
beginning of the recursion (i.e. before branching) requiring knowledge
about the item currently used for extension. This would mean, that
the branching loop needs to be replicated in the initial anemone(...)
procedure.

The current layout is a compromise between both variants. It also allows sub-
variants. It is possible to relocate the modificationSetPruning(P,EP , SπP

)
from the branching loop to the beginning of the recursion, i.e. move Line 38
to right after 21. This would save the call to modification set pruning in the
initial anemone(...) procedure (Line 17). Yet as a result the incorporating
the

modificationSetPruning(P,EP , SπP
)

into the

createComponentDataRecordSet(S, φI , φV )

procedure would not be possible without redundancy. Furthermore it is pos-
sible to enable the exploitation of the ExAnte property only for the initial
data record set. Thus this setting was avoided to be consistent with possible
implementations.

The branching loop (Lines 30 through 39) starts off with extending the
current descriptive pattern P with the conditioning item i yielding the ex-
tended descriptive pattern P ′ and calculating / accessing its valuation basis
vP ′. Lines 31 through 34 are an optimization when dynamic anti-monotone
constraints are present. It is likely that in a previous loop cycle descriptive
patterns were added to the result. Thus an extension based on the current
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item i, that was not pruned from the modification set might now be invalid
according to some dynamic anti-monotone constraint. Thus checking again
here can help to improve the performance by branch pruning. Alternatively
modification set pruning based on dynamic constraints can be used after each
recursive call, i.e. after Line 39. Note that both optimizations introduce ad-
ditional constraint checking. The latter more than the former. Additionally
the latter can include ExAnte property exploitation, which potentially modi-
fies the component data record set requiring the GP-Tree to be rebuilt. Thus
the AnEMonE implementation goes with the former as a compromise. Af-
terwards the conditional modification set EP ′ is generated by applying the
item order oIP to the current modification set EP based on the item i used
for extension (see Section 3.1.1). The next step is to generate the conditional
component data record SπP ′ from the GP-Tree T based on the item i used
for extension. The new modification set EP ′ is then pruned and the com-
ponent data record set adjusted accordingly using the extension P ′ and the
corresponding conditional component data record SπP ′ as input. Finally the
anemonerec is called on the conditional data.

The following options are available:

• disable exploiting the ExAnte property (included in modification set
pruning): can be done without side effects

• disable single prefix path exploitation: can be done without side effects

• disable early adding (included in modification set pruning): descriptive
patters need to be added after branch pruning in the branching loop.
This requires adding the code from Listing 5.2 after Line 34 checking
the current extension P ′ against all constraints and adding it to the
result, if it is rendered valid. As static anti-monotone constraints were
already checked during modification set pruning they could be left out
at this point to avoid redundant checking.

Listing 5.2: Code needed when early adding is disabled.
1 i f isV alid(P ′, vP ′ , v0, CΠI

) do

2 R← α(P ′, vP ′ , v0, R) // add pattern to result
3 endif

• disable modification set pruning : the modification set pruning proce-
dures fall away completely (i.e. Lines 17 and 38 are removed) and is
replaced by branch pruning based on anti-monotone constraints. This
is implemented by checking all anti-monotone pattern constraints CA

instead of just dynamic ones at Line 32 and by replacing Line 38 by
the code from Listing 5.2.
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5.2 Framework

The implementation is done in Java (http://java.com), version 1.6. It is
based on the framework introduced in Chapter 2 and uses the notion of
valuation bases. Data access is granted by the interface IDataRecordSet cor-
responding to the notion of a data record set, which allows iteration over
the IDataInstance interface. The IDataProjector interface allows projections
of a IDataInstance onto arbitrary objects. Projections onto valuation bases
(interface IValuationBasis) and items (interface IItem) are available through
the interfaces IValuationBasisProjector and IItemProjector. Several imple-
mentations according to the mining task have been written. A schematic
class diagram is given by Figure 5.1.

To specify a mining task, several interface were defined. The most ba-
sic interfaces are IPatternConstraint and IResult. The IPatternConstraint
interface refers to pattern constraints that also taking projected data record
sets in the form of valuation bases as an argument for evaluation as discussed
in Section 3.2.3. The initial data record set in the form of its valuation ba-
sis has to be set for each constraint before the search starts. The IResult
interface holds the solution of the mining task after the search. It incor-
porates the append function introduced in Section 3.1.2. Figure 5.2 depicts
both interfaces. Several interfaces and classes were defined and implemented
to easily formulate constraints including the IQualityFunction interface and
the QualityThresholdConstraint class according to Section 4. The two most
prominent implementations of IResult are the EveryResult and TopKResult
classes also depicted in Figure 5.2.

The implementation of the Anemone algorithm is a straight forward
translation of the algorithm from Section 5.1 using the interfaces and classes
introduced above. It can be configured to take any number of pattern con-
straints and an arbitrary item order and as well as an arbitrary branching
order. Also it allows to turn features like branch pruning, modification set
pruning, ExAnte and single prefix path exploitation on and off in appropriate
combinations. After the configuration step, the algorithm is called by pro-
viding a result IResult and a DataComponents class. The latter contains an
IDataRecordSet, an IItemProjector and an IValuationBasisProjector and is
translated into a component data record set, that is a IDataRecordSet con-
taining ComponentDataInstances. ComponentDataInstances contain a list of
IItems and a IValuationBasis according to Section 3.2.3. A schematic class
diagram is given by Figure 5.3. As of now the data structure used in the
algorithm itself is not abstracted as suggested by Section 3.2.3, but uses a
combination of component data record sets and a GP-Tree for a data struc-
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IDataRecordSet

<<interface>>

iterator() : Iterator<IDataInstance>

IDataInstance

<<interface>>

1

DataProjector

<<interface>>

project(d : IDataInstance) : Object

IItemProjector

<<interface>>

project(d : IDataInstance) : List<IItem>

IValuationBasisProjector

<<interface>>

project(d : IDataInstance) : IValuationBasis

IItem

<<interface>>

IValuationBasis

<<interface>>

projection

1

0..*
1

projection

1

1

1

ComponentDataInstance

item : List<IItem>

valuationBasis : IValuationBasis

<<realize>>

Figure 5.1: A schematic class diagram of the basic interfaces.
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IResult

<<interface>>

append(items : List<IItem>,v : IValuationBasis)

getResults() : List<PatternExtension>

IPatternConstraint

<<interface>>

evaluate(items : List<IItem>,v : IValuationBasis)

setOverallValuationBasis(v : IValuationBasis)

Pattern

items : List<IItem>

valuationBasis : IValuationBasis

IQualityFunction

<<interface>>

calculateQuality(items : List<IItem>,v : IValuationBasis)

setOverallValuationBasis(v : IValuationBasis)

QualityThresholdConstraint

greater : Boolean

equals : Boolean

threshold : Double

qualityFunction : IQualityFunction

<<realize>>

EveryResult

<<realize>>

TopKResult

k : Integer

qualityFunction : IQualityFunction

<<realize>>

Figure 5.2: A schematic class diagram of search specific interfaces and classes.
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DataComponents

dataRecordSet : IDataRecordSet

itemProjector : IItemProjector

valuationBasisProjector : IValuationBasisProjector

ITree

<<interface>>

append(items : List<IItem>,vb : IValuationBasis)

getValuationBasis(item : IItem) : IValuationBasis

getConditionalDataRecordSet(item : IItem) : IDataRecordSet

isSinglePrefixPath() : boolean

getSinglePrefixPath() : List<ITreeNode>

ITreeNode

<<interface>>

getItem() : IItem

getValuationBasis() : IValuationBasis

getConditionalDataRecordSet(...)

returns a component data record set,

i.e. a IDataRecordSet containing

ComponentDataInstances

Figure 5.3: A schematic class diagram of data specific interfaces and classes.

ture. ITree provides the interface required by a GP-Tree implementation as
given by Figure 5.3.

As the framework is implemented now, no Generics are being used. This
results in many castings done by classes that need certain kinds of IDataIn-
stances, IItems and IValuationBases, such as IDataProjectors or IQuality-
Functions. Thus also no type checking can be applied beforehand. For more
efficiency and better configuration error detection the framework needs to be
adjusted accordingly, i.e. Generics need to be introduced.



6
Evaluation

By specifying the AnEMonE algorithm to solve the generic problem of de-
scriptive pattern mining it can be applied to any descriptive pattern mining
instance abiding by the framework introduced in Chapter 2. The AnEMonE
algorithm at its minimal optimization level only uses branch pruning based
on anti-monotone constraints (see Section 3.2.1). It uses a reversed fre-
quency order as item as well as branching order, i.e. given a descriptive
pattern πP and its modification set EP , items i ∈ EP associated with an
extensions πP∪{i} of higher frequency are assigned smaller modification sets
EP∪{i} and are branched on earlier. This setup of the AnEMonE algorithm
is labeled min. The same algorithm, but exploiting anti-monotone proper-
ties using modification set pruning instead of branch pruning is labeled mod.
The other options mentioned in Section 5.1 and their combination with the
different settings of the algorithm are listed in Table 6.1.

This chapter will compare the different algorithm settings. They are
applied to the descriptive pattern mining classes defined by Section 4.1.2, i.e.
frequent pattern mining [4], subgroup mining [56, 8] and community mining
[6]. This includes the possibility to exploit ExAnte property for subgroup
mining which has not been done before.

The main characteristics to be compared in order to measure the perfor-
mance differences when using different combinations of optimization methods
are the runtime and the number of conditional trees (the tree built from the
initial data record set is not conditional) being generated during the search.
At this point, note that any runtime depicted in this section is based on
a single run. Characteristic runs have been selected. At times the Java’s
JIT compilation feature randomly introduced large deviations from the ex-
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min mod

spp single prefix path exploitation as introduced in Section
3.2.3 (only for GP-Trees which are a single prefix path
as described by Section 5.1)

early early adding is not used
together with branch
pruning because when
adding descriptive patterns
early, all constraints need
to be checked including
anti-monotone ones; thus
modification set pruning
can be applied without
extra cost

early adding as introduced
by Section 3.2.2; instead
of adding descriptive pat-
terns to the result at their
respective nodes they are
added right after modifica-
tion set pruning in order to
provide information for dy-
namic constraints faster

exInit ExAnte property
exploitation is not used in
combination with branch
pruning as exploiting the
ExAnte property requires
checking the extensions of
the items from the current
modification set against
anti-monotone constraints
thus enabling modification
set pruning

exploits the ExAnte prop-
erty (see Section 3.2.1) on
the initial data record set
only

exRec exploits the ExAnte prop-
erty (see Section 3.2.1) on
all but the initial data record
set

exFull always exploits the ExAnte
property (see Section 3.2.1)

estim top-k mining (see Section 4.2) defines a quality func-
tion; the corresponding optimistic estimate can be used
for branch sorting ; those items associated with patterns
assigned a higher optimistic estimate value are branched
on earlier

Table 6.1: Options of the AnEMonE algorithm used in this chapter.
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pected runtimes. In order to verify the correctness of the conclusions being
drawn, several tests were run with the JIT compilation feature turned off.
A performance loss up to a factor of 20 has been observed. Nevertheless
it was possible to derive accurate statements due to the relative nature of
comparing the different settings.

The algorithm was run on a 2.2GHz Dual Core system with 4GB of
RAM. The operating system in use was a 64bit version of Ubuntu 11.04 with
a SWAP partition of 3.9GB. The algorithm was implemented using Java
1.6.9 22 (the results of the java -version command is stated by Listing
6.1). The virtual memory for a JVM instance was set to 2048m.

Listing 6.1: Version of the Java Virtual Machine used for experiments.
1 java version "1.6.0_22"
2 OpenJDK Runtime Environment (IcedTea6 1.10.1) (6b22 -1.10.1 -0 ubuntu1 )
3 OpenJDK 64- Bit Server VM (build 20.0-b11 , mixed mode )

Section 6.1 will cover the settings represented by the first five rows from
Table 6.1. Section 6.2 evaluates the last row, i.e. sorting branches by their
optimistic estimates. After covering two descriptive pattern mining classes
Section 6.3 illustrates how a third descriptive pattern class can benefit from
a selected set of optimizations.

6.1 Frequent Itemset Mining

If the original definition [4] is used, frequent pattern mining, as introduced in
Section 4.1.2, is one of the simplest descriptive pattern mining classes. It only
introduces a single constraint: the frequency constraint, i.e. the projection
of a descriptive pattern has to be equal to or exceed a certain size to be
considered valid. The goal of frequent pattern mining can either be to find
all descriptive patterns exceeding a fixed threshold or to find the top most
frequent descriptive patterns resulting in a dynamically increasing threshold.
The latter setup is equivalent to top-k mining using a generative quality
constraint based on the frequency quality function (see Section 4 and Section
4.2 in particularly). Both scenarios are explored (see Section 6.1.1 and 6.1.2).

This section will focus on comparing branch pruning with modification set
pruning additionally taking single prefix path exploitation into account. Also,
when specifying dynamic constraints (e.g. when searching for the top most
frequent descriptive patterns) adding patterns to the result early can influence
the performance of the search. The corresponding effects are highlighted
by Section 6.1.2. Finally a monotone description constraint is introduced
and the exploitation of the ExAnte property is evaluated (see Section 6.1.3).
Considering Table 6.1 this section covers rows one through five.
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mushroom dataset
attributes 22
instances 8124
attribute-value pairs (items) 119

(a) Information about the mushroom dataset.

retail dataset
instances 88162
items 16470

(b) Information about
the retail dataset.

Figure 6.1: Information about the mushroom and the retail dataset.

Two datasets are used by the experiments listed in this section. These are
the mushroom and the retail dataset. The mushroom dataset is from the UCI
Machine Learning Repository [27] and is an attribute-value based dataset.
It contains descriptions of mushrooms based on attributes including a clas-
sification rendering them “edible”, “poisonous” or “unknown”. Information
about its dimensions is given by Figure 6.1(a). The retail dataset is from
the Frequent Itemset Mining Dataset Repository [1] and is item-based, i.e. it
contains transactions each corresponding to a set of items. The data corre-
sponds to retail market basket data from a Belgian retail store. Information
about its dimensions is given by Figure 6.1(b).

6.1.1 Relative Frequency Threshold

The experiments in this section compare branch pruning with modification
set pruning in the presence of a fixed frequency threshold. The frequency
threshold is chosen relatively to the size of the dataset (amount of individu-
als). In addition the effect of exploiting the single prefix path is evaluated.

The mushroom Dataset

Figure 6.2 shows the number of valid descriptive patterns at different rela-
tive frequency thresholds for the mushroom dataset. Note the logarithmic
scale! When decreasing the threshold linearly, the amount of results grows
exponentially.

Figure 6.3 shows the amount of conditional trees (all GP-Trees except
the first one) generated by the algorithm. It also depicts their accumulated
size at different relative frequency thresholds. The amount of conditional
trees is mainly affected by the exploitation of the single prefix path. This is
the case even though the exploitation of single prefix paths is limited to trees
that are single prefix paths, i.e. trees only containing nodes being part of a
single prefix path. This is due to the fact that the number of conditional trees
generated from a single prefix path, without exploiting it, grows exponentially
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Figure 6.2: Number of frequent descriptive patterns in the mushroom dataset
at different relative frequency thresholds.

with respect to its size. Thus, skipping those trees in large scales can account
for better runtimes as Figure 6.4 depicts. In general modification set pruning
also helps to reduce the amount of generated conditional trees. In this case
the effect is only marginal.

Note the development of the sum of the conditional tree sizes for the
min.spp and the mod setting. Depending on the threshold, the accumulated
size of all conditional trees is sometimes larger for min.spp and sometimes
for mod. The change is especially significant between thresholds 0.2 and 0.3
(note the logarithmic scale). At this point the amount of exploited single
prefix paths and the consequently saved exponential amount of conditional
trees significantly surpasses the effect of modification set pruning alone. Such
characteristic developments are generally due to the structure of the dataset.
The dominance of the effect of single prefix path exploitation might hint at
a dataset were single items occur very often and if less often, then likely
together with a more probable item, thus, raising the probability for sin-
gle prefix paths. This hypothesis is backed by the low amount of different
attribute-value pairs considering the size of the dataset (the attribute-value
pairs to dataset size ratio is around 1.4 percent).

Figure 6.4 shows the runtimes of the algorithm on the mushroom dataset
for different relative frequency thresholds. As expected from the analysis
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Figure 6.3: Amount of conditional trees and the sum of their respective sizes
generated by the AnEMonE algorithm on the mushroom dataset at different
relative frequency thresholds.
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Figure 6.4: Runtimes of the AnEMonE algorithm on the mushroom dataset
at different relative frequency thresholds.

above, branch pruning and modification set pruning hardly differ, while ex-
ploiting single prefix paths greatly improves the performance at lower thresh-
old levels. Not expecting the implementation to be too efficient, the runtimes
can still compare to, yet not quite compete with, the results of Frequent Item-
set Mining Implementations 2003 and 2004 [29, 2], when exploiting single
prefix paths.

The retail Dataset

Figure 6.5 shows the amount of frequent descriptive patterns for the retail
dataset at different relative frequency thresholds. Note that for the retail
dataset no results are found up to a threshold of 0.6. On the other hand the
number of results grows rapidly for thresholds smaller than 0.025. Thus, the
threshold range was extended and split into two threshold ranges for better
analysis.

In contrast to the mushroom data set, the effect of modification set prun-
ing is the dominating factor for reducing the number of generated conditional
trees on the retail dataset as is shown in Figure 6.6. Because of the amount
of results for higher frequency thresholds backed by the fact that there are a
lot of different items compared to the size of the dataset (the item to dataset
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Figure 6.5: Number of frequent descriptive patterns in the retail dataset at
different relative frequency thresholds. The subfigures show different thresh-
old ranges.
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size ratio is at roughly 19 percent), it is possible to deduce that single items
are quite rare in the dataset and even more so their combinations with other
items. On the other hand the low amount of frequent patterns found at
thresholds 0.5 through 0.025 induces a few, yet exceptionally frequent items.
Such a distribution does not favor the existence of single prefix paths because,
like items themselves, combinations of items do not occur very often.

In such a scenario modification set pruning can be very effective. By
removing infrequent items before adding them to a (conditional) tree or using
them for extending patterns, trees are kept small (see Figure 6.7) and actual
extensions sparse (see Figure 6.6). The low probability of items occurring
together favors this optimization mechanism. Note that as the threshold
decreases, less items can be pruned by modification set pruning. The amount
of items to consider increases and the difference between using modification
set pruning or not decreases, both in amount of generated conditional trees
and their respective sizes. Contrariwise with lower thresholds the probability
of single prefix paths raises. The beginnings of this effect can be observed at
threshold 0.0001 in Figure 6.6 and Figure 6.7 respectively. The same effect
at much higher thresholds was observed for the mushroom dataset. Figure
6.10 shows the initial tree’s size. The effect of modification set pruning can
be seen clearly. Yet it also becomes apparent how lower thresholds limit
pruning possibilities.

The runtimes of the algorithm on the retail dataset at different thresholds
are shown by Figure 6.8. As expected from the analysis above the main
performance gain is introduced by using modification set pruning instead of
solely depending on branch pruning whereas exploiting single prefix paths
does hardly show any advantage in both threshold ranges. Note that very
strong fluctuations occur for the min.spp and mod.spp settings. At the cost
of considerably longer runtimes these random variations did not occur when
using Java without its JIT compilation feature. Nevertheless, the overall
distribution of runtimes was the same.

For the retail dataset the runtimes are considerably worse compared to
the results of Frequent Itemset Mining Implementations 2003 and 2004 [29, 2].
Better performance can probably be achieved by more efficient implementa-
tions of internal procedures. An example is the most likely inefficient im-
plementation of the tree structure and its building procedure, which can be
derived from the fact that building the initial tree accounts for a relatively
large amount of the overall runtime (see Figure 6.9), even considering that
the initial tree is obviously the largest (comparing Figures 6.7 and 6.10).
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Figure 6.6: Amount of conditional trees generated by the AnEMonE algo-
rithm on the retail dataset at different relative frequency thresholds. The
subfigures show different threshold ranges.
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Figure 6.7: Sum of the sizes of conditional trees generated by the algorithm
AnEMonE on the retail dataset at different relative frequency thresholds.
The subfigures show different threshold ranges.
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Figure 6.8: Runtime of the AnEMonE algorithm on the retail dataset at dif-
ferent relative frequency thresholds. The subfigures show different threshold
ranges.
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Figure 6.9: Size of the initial tree on the retail dataset at different relative
frequency thresholds. The subfigures show different threshold ranges.
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Figure 6.10: Time for building the initial tree on the retail dataset at different
relative frequency thresholds. The subfigures show different threshold ranges.
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6.1.2 Dynamic Frequency Threshold

Instead of specifying a fixed threshold the number of frequent descriptive
patterns to be part of the result can be limited to a fixed number of top
most frequent descriptive patterns (see Section 4.2). Thus, the frequency
threshold raises dynamically dependent on the patterns already added to the
result. Again the experiments compare branch pruning with modification set
pruning optionally exploiting single prefix paths. Additionally early adding
is evaluated (see Section 3.2.2).

Note 6.1 (Early Adding).
Adding pattern early can be done at different times. It can be done after or
during the evaluation of extensions based on the items in the modification
set (modification set pruning). The latter allows to have more information
at each subsequent extension to be checked. After all descriptive patterns
are added another pass over all extensions is needed to finish modification set
pruning as the gained information from adding the descriptive patterns is only
fully available at this point. Other possibilities were tested. The difference
was insignificant.

The mushroom Dataset

Figure 6.11 shows the amount of conditional trees generated during the search
as well as the sum of their sizes. Similar to the relative threshold case, ex-
ploiting the single prefix path is the main factor in reducing the amount of
conditional trees generated. Additionally adding patterns to the result early
during the search raises the threshold faster, thus, allowing more efficient
pruning of the modification set causing less and smaller trees as Figure 6.11
shows. Moreover, as in the relative threshold case, the overall size of con-
ditional trees is lower for the mod settings compared to the min.spp setting
at first. Yet, this relation changes between the result limit 1000 and 10000
which corresponds to a relative frequency threshold of 0.3 (see Figure 6.2 and
6.3 for comparison). Adding patterns early in combination with single prefix
path exploitation achieves the overall least number of smallest conditional
trees.

Figure 6.12 shows the runtimes of the algorithm for several result set
limits. The runtimes are very close together, thus, an accurate comparison
is not sensible. Yet, for higher limits the benefits of the optimizations and
their respective combinations become apparent.
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Figure 6.11: Amount of conditional trees and the sum of their respective sizes
generated by the AnEMonE algorithm on the mushroom dataset at different
result set limits.
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Figure 6.12: The runtime of the algorithm on the mushroom dataset at
different result set limits.

The retail Dataset

Figure 6.13 shows the amount of conditional trees as well as their accumu-
lated size generated during the search for the descriptive patterns with the
top k frequencies. Adding patterns early (mod.early) generates by far the
least amount of conditional trees. Modification set pruning results in slightly
less conditional trees than min. As in the case of relative thresholds exploit-
ing single prefix paths shows small advantages. The effect was stronger on
the mushroom dataset. The advantage of adding patterns to the result early
(early) is due to the fact that initially the frequency threshold starts at zero.
As a result, it is less likely to prune items at the first few search nodes until
more patterns are added to the result.

The tree sizes differ greatly between min, mod and early. Mod generates
smaller trees than min because it prunes items early, which are then not part
of the tree. Mod.early raises the threshold fast being able to prune items
even earlier than mod resulting in the smallest trees.

Figure 6.15 shows the runtimes for several result limits on the retail
dataset. As expected, the runtimes for adding results early to raise the
threshold quickly yields the best results. Note that again, compared to the
initial tree building time, the overall runtime is not much higher. This is
explainable by the fact that the size of all conditional trees combined (which
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Figure 6.13: The amount of generated conditional trees and their accumu-
lated size on the retail dataset at different result set limits.
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Figure 6.14: The size of the initial tree and its building time on the retail
dataset at different result set limits.
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Figure 6.15: The runtime of the AnEMonE algorithm on the retail dataset
at different result set limits.

does not include the initial tree) is smaller than the initial tree size in all
cases.

The considerable runtime difference (factor two) between min and mod

should not occur as the main time spent by the algorithm is when creating
the initial tree. As no threshold is set when building the initial tree, mod does
not have an opportunity to prune. Thus, the trees are of the same size (as
Figure 6.14(a) shows). The same set of tests was run without Java’s Just-In-
Time compilation feature yielding the correct proportions, yet, tremendously
longer runtimes (see Figure 6.16).

6.1.3 ExAnte

In this section a monotone description constraint is added to frequent pattern
mining. This enables the exploitation the ExAnte property. Different modes
are available as explained by Table 6.1. Note that exInit is equivalent to a
preprocessing step as suggested by the original ExAnte paper [12]. exRec and
exFull take the exploitation of the ExAnte property a step further pushing
it into the recursion (also suggested by [12] and implemented by [10]). Note
that the corresponding method introduced in [12] and reviewed in Section
3.2.1 requires additional database passes at each search node introducing a
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Figure 6.16: The runtime of the AnEMonE algorithm on the retail dataset
at different result set limits with Java’s JIT feature turned off.

trade-off between the effect of pruning and costs of the pruning method.

The data used for the corresponding experiments is retail dataset. It
contains market basket data, thus, each item was sold for a specific price.
Instead of looking for frequent itemsets only, it is possible to search frequent
itemsets associated with a minimum overall price. This defines a monotone
description constraint (for more monotone description constraints see [12]).
As no real world data has been available, a price between 0 and 10 was
assigned randomly to each item in the dataset. For a descriptive pattern to
be valid the accumulated price of corresponding set of items must reach or
surpass a predefined threshold p.

Two test scenarios are explored: exploiting the ExAnte property in the
context of relative frequency thresholds and in the context of dynamic fre-
quency thresholds. Only modification set pruning is being used in combina-
tion with exploiting the ExAnte property because modification set pruning
has proven to be more efficient than branch pruning in the previous sec-
tions. Also exploiting the ExAnte property requires checking anti-monotone
(data) constraints, thus, skipping modification set pruning in favor of branch
pruning introduces redundancy in checking anti-monotone constraints.

The following section will focus on the lower relative frequency threshold
range known from the previous sections, because more interesting develop-



140 CHAPTER 6. Evaluation

 5 10 15 20 25 30 35 40 45 50

 0.0001
 0.0002

 0.0003
 0.0004

 0.0005
 0.0006

 0.0007
 0.0008

 0.0009
 0.001

 0

 50000

 100000

 150000

 200000

 250000

Results Count (retail)

relative fre
quency threshold

price threshold

mod
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constraint.

ments were observed. Moreover the effect of exploiting single prefix paths
was shown before and will only be mentioned briefly in the following anal-
ysis. Overall this section covers rows three through five intersected by the
second column from Table 6.1.

Relative Frequency Threshold

Figure 6.17 shows the amount of frequent patterns satisfying different price
thresholds. For higher price thresholds the number of results drops tremen-
dously. Thus, exploiting the monotone description constraint can potentially
show significant effects on generated conditional trees and the overall tree
size.

Figures 6.18 and 6.19 show the amount of generated conditional trees
and their overall size for different algorithm settings at different thresholds.
By reducing the size of conditional data record sets as well as the amount of
items used for extensions, exploiting the ExAnte property keeps trees small.
Additionally the number of conditional trees decreases according to the num-
ber of results. The effect of ExAnte on the initial data record set is marginal
(see Figure 6.20).

Exploiting the ExAnte property pays its reduction of tree numbers and
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Figure 6.18: The amount of generated conditional trees on the retail dataset
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thresholds.
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Figure 6.20: Initial tree size for the search on the retail dataset at different
price and relative frequency thresholds.

sizes with additional (conditional) data record set passes. The reference
amount of data records passed during a search is given by only using modifi-
cation set pruning (mod) (see Figure 6.21). Note how exploiting the ExAnte
property increases the number of passed data records by large quantities for
lower price thresholds, but also how this relation changes as price thresholds
increase. Low frequency thresholds and higher price thresholds denote more
items and data records to prune by monotonicity. As the number of con-
ditional data record set passes decreases, and with every pruned item, the
ExAnte property starts to be more efficient for higher price thresholds than
solely exploiting anti-monotonicity by modification set pruning. Note how
this effect does not occur, if exploiting the ExAnte property is only applied
to the initial data record set, i.e. is only used as a preprocessing step.

The runtimes (see Figure 6.22) reflect the analysis from above thereby
illustrating how less and smaller trees weigh against additional data record
set passes. Using ExAnte property exploitation only on the initial data record
set reduces tree numbers and sizes marginally, thus, introducing data record
set passes that are less efficient than others considering the pruned items
and data record relative to the data record set size. Additionally, the initial
passes are costly as more data records and items are present in the initial
data record set. The result is a considerably worse runtime compared with
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Figure 6.21: Number of data record sets passed during the search on the
retail dataset at different price and relative frequency thresholds.

using modification set pruning alone. An exception is seen at the highest
frequency and the highest price threshold.

Using ExAnte property exploitation on all but the initial data record set
shows a strong effect due to its significant tree number and size reduction
even though a lot more data records are passed overall. This is because the
conditional data record sets which the exploitation method of the ExAnte
property is working on are built from conditional trees being small compared
to the initial data record set (compare the initial tree size 6.20 with the
accumulated size of all conditional trees 6.19). The runtime of using full
ExAnte property exploitation (exFull) results directly from combining both
the exInit and the exRec settings. Overall, the effect of exploiting the Ex-
Ante property is strongly dependent on the characteristics of the analyzed
dataset. Denser datasets would result in larger conditional trees making the
exploitation more costly.

The effect of exploiting single prefix paths is shown in Figure 6.23 de-
picting the amount of conditional trees generated. Figure 6.24 shows the
corresponding runtimes. The amount of conditional trees drops according to
the exploitation of single prefix paths. The runtime is marginally effected.
The proportions basically stay the same.

Figure 6.25 shows how initial pruning based on the ExAnte property is
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Figure 6.22: Runtimes for the search on the retail dataset at different price
and relative frequency thresholds.
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Figure 6.23: Amount of conditional trees for the search on the retail dataset
at different price and relative frequency thresholds exploiting single prefix
paths.
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Figure 6.24: Runtimes for the search on the retail dataset at different price
and relative frequency thresholds exploiting single prefix paths.

more efficient for higher frequency thresholds in relation to smaller ones but
still does not surpass the exRec setting.

Dynamic

The first thing to notice is that using the monotone price constraint together
with a dynamically raised frequency threshold based on a limited set of pat-
terns has a strong negative effect on how many conditional trees are being
generated (and also how many candidates are being considered) during the
search compared to the case using fixed relative thresholds (compare Figures
6.6 and 6.18 with Figures 6.13 and 6.26). When using a relative frequency
threshold the set of considered patterns is fixed, dependent on the frequency
threshold and the price constraint further limits the set of results. The rel-
ative frequency threshold is at its maximum from the beginning. On the
other hand, when using a dynamic threshold based on the currently found
set of most frequent patterns, the limitation of valid patterns by the price
constraint results in less patterns being added to the result at lower levels
of the search. Thus, the frequency threshold is raised more slowly resulting
in less anti-monotone pruning. It takes time and the exploration of many
branches for the threshold to reach its maximum. As a result of this, more



146 CHAPTER 6. Evaluation

 5 10 15 20 25 30 35 40 45 50

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 0
 2
 4
 6
 8

 10
 12
 14
 16

Conditional Trees (retail)

relative fre
quency threshold

price threshold

mod
mod.exRec
mod.exInit
mod.exFull

Figure 6.25: Amount of conditional trees for the search on the retail dataset
at different price and relative frequency thresholds illustrating how using
ExAnte on the initial data is more effective at higher frequency thresholds.

conditional trees are produced.

The performance gain achieved by adding patterns early (mod.early) to
the result in order to raise the frequency threshold quickly only shows a small
effect on the number of generated conditional trees as the price threshold
increases. This is due to the large number of trees being generated when a
monotone constraint is present as is shown in Figure 6.26. As expected, the
corresponding effect is marginally, yet obviously, visible when looking at the
runtimes (see Figure 6.27). The remainder of this section will focus on the
slightly slower variant not adding patterns early to allow direct comparison
with the static experiments.

Figure 6.28 shows the amount of conditional trees for the different Ex-
Ante settings introduced by Table 6.1. As when using the relative frequency
threshold, fully exploiting the ExAnte property (exFull) as well as by using
it on conditional data only (exRec) reduces the number of conditional trees
greatly. The ExAnte property exploitation used only on the initial data record
set (exInit; equivalent to preprocessing) does not yield considerable results.
The latter even increases the number of conditional trees. This effect can
be explained by the fact that exploiting the ExAnte property influences the
order of branching (currently the reversed frequency order) by removing data
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Figure 6.26: Amount of conditional trees for the search on the retail dataset
at different price thresholds and result set limits illustrating how adding
patterns early compares to modification set pruning alone.

records considered for extensions. Thus, depending on the characteristics of
the dataset and the applied branching order, those changes can influence the
search either positively or negatively.

Figure 6.29 shows the number of data records passed according to the
different thresholds and settings. Only using modification set pruning (mod)
the amount of conditional trees generated increases for large result set lim-
its and high price thresholds, thus accordingly, the amount of passed data
records in order to build those trees increases. Using ExAnte property ex-
ploitation on the initial data record set alone (mod.exInit) does not show
a significant increase or decrease of passed data records compared to using
modification set pruning only (mod). Those algorithm settings that exploit
the ExAnte property on conditional data (mod.exRec and mod.exFull), pass
more data records for lower price thresholds. As the threshold increases more
data records and items can be pruned exploiting the monotone description
constraint. This effect, as well as the resulting smaller amount of conditional
trees, reduces the passed data records to an extend were less data records are
passed compared with settings not applying the ExAnte property on condi-
tional data.

Figure 6.30 shows the runtimes according to the different thresholds and
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Figure 6.27: Runtimes for the search on the retail dataset at different price
thresholds and result set limits how adding patterns to the result early influ-
ences the runtime positively.
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Figure 6.28: Amount of conditional trees for the search on the retail dataset
at different price thresholds and result set limits.
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Figure 6.29: Data records passed during the search on the retail dataset at
different price thresholds and result set limits.

settings. The runtime behavior is clearly dominated by using ExAnte prop-
erty exploitation on conditional data (mod.exRec and mod.exFull). The
proportions reflect the number of conditional trees generated (see Figure
6.28).

While the effect of exploiting single prefix paths was visible when using
relative frequency thresholds in generated conditional trees, the runtime was
hardly affected. The same effect is much stronger for the dynamically raised
frequency threshold, as can be seen by comparing Figures 6.31 and 6.32 with
Figures 6.28 and 6.30. The number of conditional trees is cut by more than
half resulting in much better runtimes (see Figure 6.32). The proportions of
the different settings for conditional trees and the runtimes stay the same.

6.2 Subgroup Mining

Subgroup mining [56, 8] was formulated to fit the definition of descriptive
pattern mining in Section 4.1.2. Like frequent pattern mining it defines a
single constraint: a quality constraint. In contrast to frequent pattern mining
the corresponding quality functions depend on a target variable. Different
quality functions can be derived based on such a target variable. Dependent
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Figure 6.30: Runtimes for the search on the retail dataset at different price
thresholds and set result set limits.
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Figure 6.31: Amount of conditional trees for the search on the retail dataset
at different price thresholds and result set limits using single prefix path
exploitation.
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Figure 6.32: Runtimes for the search on the retail dataset at different price
thresholds and result set limits using single prefix path exploitation.

on the assigned qualities a fixed threshold or a set of the descriptive patterns
with the largest qualities, values can be the objective of the search. This
section will focus on the latter, thus, doing top-k mining (see Section 4.2).
In this context the order of adding descriptive patterns to the result plays
an important role. One heuristic for positively influencing the corresponding
order is sorting by optimistic estimate. So, additionally to using the opti-
mistic estimate for pruning, it is being used for specifying the branch order
(estim), i.e. those items associated with extensions assigned larger optimistic
estimates values will be used for branching first. The effects are highlighted
by Section 6.2.1. Furthermore all optimizations introduced by Section 3.2
can be used for any descriptive pattern mining class or respective variations.
Section 6.2.2 demonstrates how exploiting the ExAnte property can be ap-
plied to an extended version of subgroup mining which has not been done
before.

6.2.1 The credit-g Dataset and Branching Order

The first subgroup mining instance is based on the dataset credit-g. This
dataset is part of the UCI Machine Learning Repository [27] and is orig-
inally called “Statlog (German Credit Data) Data Set”. It has been dis-
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Credit-g
attributes 21
instances 1000
attribute-value pairs 98

Table 6.2: Information about the credit-g dataset.

cretized using WEKA’s (version 3.6.4) [31] unsupervised discretization utility
(weka.filters.unsupervised.attribute.Discretize). It contains data
classifying individuals as “good” or “bad” concerning credits. Individuals
are described by a set of attributes. Information about the dataset dimen-
sions are found in Table 6.2.

The experiments are based on finding a set of descriptive patterns with
the best qualities. The quality function used is the Piatetsky-Shapiro quality
function as introduced in Section 4.1.2. Pruning is based on the correspond-
ing optimistic estimate from the same section. The setting estim is sorting
items to branch on by the optimistic estimate of their corresponding exten-
sions instead of their frequency. This has been proven to be a well working
heuristic (cf. [56, 30, 5]).

Figure 6.33 shows the amount of conditional trees generated during sub-
group mining. The results are as expected. Sorting by optimistic estimate
generally produces the better results. Exploiting single prefix paths gains
importance as the amount of patterns to search increases (i.e. the associated
relative quality threshold decreases) and even yields better results than rely-
ing on sorting by optimistic estimate alone. The other optimizations emit the
same behavior as shown in previous sections. Combining all optimizations
yields the best results without exception. The same is true for the runtimes.

6.2.2 The mushroom Dataset and ExAnte

The mushroom has been used for subgroup mining before (c.f. [30]). The
original task is to find patterns of features (attribute-value pairs) that de-
scribe edible mushrooms. The amount of resulting descriptive patterns is
limited to those with best qualities according to a quality function judging
the edibility of mushrooms described by the classifying descriptive pattern
and based on the given data. Just like in the previous section the Piatetsky-
Shapiro quality function is used.

Currently lacking an application of monotone description constraints in
the field of subgroup mining, the mushroom dataset is extended by assigning
a value of interest to each feature (attribute-value pair). This value of interest
can be high, for example, if a certain feature turns out to specify mushrooms
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Figure 6.33: The amount of generated conditional trees and the run-
time on the credit-g dataset for subgroup mining with the nominal target
“class=good” at different result set limits.
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Figure 6.34: Amount of conditional trees for the search on the mushroom
dataset for subgroup mining with a monotone description constraint being
exploited the ExAnte property.

that taste very well, i.e. red dots indicate a good taste. Given that, the
more features indicating good taste, the better the mushroom tastes (inde-
pendent of the truth of this statement). The monotone description constraint
can limit the valid patterns describing mushrooms to those that surpass a
threshold according to the value of interest. A value of interest from a range
between 0 and 1 was assigned randomly to each attribute-value pair. Several
threshold levels are used throughout this section.

This set of experiments shows how exploiting monotone descriptive con-
straints by the ExAnte property effects the subgroup search. Figures 6.34
and 6.35 show the effect of exploiting the ExAnte property by comparing
the amount of generated conditional trees and runtimes. Both the number
of generated conditional trees as well as the runtimes are lower for higher
thresholds according to the value of interest.

The conclusion drawn from this section is that exploiting the ExAnte
property in the domain of subgroup mining can be seamlessly applied and
potentially improves the performance of the search, if monotone description
constraints are present.
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Figure 6.35: Runtimes for the search on the mushroom dataset for subgroup
mining with a monotone description constraint exploited by the ExAnte
property.

6.3 Community Mining

Community mining as introduced by [6] and defined as a descriptive pattern
mining class by Section 4.1.2 uses a dataset built from a graph as input. The
individuals are associated with edges each assigned a set of items derived
from the intersection of terms corresponding to each node. A community is
a subgraph described by a set of items, i.e. a descriptive pattern selecting
a set of edges. A descriptive pattern is valid if it is equal to or exceeds a
threshold according to some quality function based on (sub)graphs. This
section demonstrates another pattern mining problem which can be mapped
onto a descriptive pattern mining class. A limited set of optimization has
been chosen to highlight how the previously evaluated optimization methods
also apply to this new problem setting.

Community mining is based on a quality constraint. The objective of the
search in this section was chosen to be top-k mining. The corresponding
quality function is the modularity quality function featuring an optimistic
estimate (see Section 4.1.2). The dataset being used is called graphEdges and
is based on the visit-graph GV as well as the user/topic relation featuring 100
topics as mentioned in [6]. Information about the dimensions of the resulting
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GraphEdges
instances 5543
topic (items) 100

Table 6.3: Information about the graphEdges dataset.

dataset are given by Table 6.3.
Figure 6.36 shows the number of conditional trees generated during the

search. The dominating factor in optimizing the search is adding descriptive
pattern early to the result (early). The characteristics of the dataset and
of the constraints do not seem to favor any other sort of optimization in
particular like exploiting the single prefix path (spp) or sorting branches by
optimistic estimate (estim). Figure 6.36 contains many algorithm settings.
To confirm the dominance of the early adding (early), Figure 6.37 shows the
same figure, but only for the mod and the mod.early setting.
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Figure 6.36: The amount of generated conditional trees and the runtime on
the graphEdges dataset for community mining at different result set limits.
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Figure 6.37: The amount of generated conditional trees and the runtime on
the graphEdges dataset for community mining at different result set limits.



7
Conclusion

The last chapter summarizes the results and contributions of this work and
lists perspectives for future work.

7.1 Summary

A framework was introduced allowing to formalize the problem of pattern
mining and its specialization descriptive pattern mining. Classes of these
problems can be specified by defining constraints utilizing the notion of val-
uation bases. Valuation bases express useful properties of the data which
patterns are evaluated against.

General search strategies were reviewed and applied to descriptive pat-
tern mining. Optimizations based on constraints derived from more specific
pattern mining tasks like frequent pattern mining were incorporated into the
search such as anti-monotone pruning and the exploitation of the ExAnte
property. To allow for a more efficient search, data structures common to the
pattern mining community were revisited and it was discussed how they can
be applied to the general problem setting defined by the framework. The
FP-Tree data structure turned out to be highly compatible with the concept
of valuation bases keeping the stored data to a minimum under the condition
that valuation bases are of constant size.

Several pattern mining instances were defined using the framework by
specifying a set of constraints including frequent pattern mining (see [4]),
subgroup mining (see [56, 7]) and mining descriptive community patterns
(see [6]). The advantage of abiding by the framework specifying descriptive

159
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pattern mining instances by constraints and valuation bases lies in the ex-
tendability by adding arbitrary constraints while any optimization introduced
to algorithms solving the descriptive pattern mining problem are directly ap-
plicable to any specific problem setting.

The introduced strategies and optimizations were compiled into theAnEMonE
algorithm featuring pruning based on anti-monotone constraints, exploitation
of the ExAnte property as well as single prefix paths. AnEMonE was evalu-
ated against several data mining classes on different datasets comparing the
different optimization methods. The results met the expectations based on
their counterparts applied to the more specific problem they were originally
designed for. This raises the expectation to combine more optimizations into
a single general algorithm.

7.2 Outlook

The generic approach of the introduced framework provides a layout for
future algorithms that cope with a wide variety of different problem settings
in the descriptive pattern mining domain. The AnEMonE algorithm is a
first step into that direction. The pattern mining community knows many
optimizations for specialized problem settings. It will be interesting to see
which ones can be ported to the abstract problem of descriptive pattern
mining especially focusing on the synergetic effect of different constraints
as mentioned in [13, 22]. But there are also other concepts that are worth
exploring.

The concept of closed descriptive pattern descriptions and how it is to be
formulated by using the descriptive pattern mining framework was reviewed
in Section 4.1.3. Only minimal optimizations from [54] were utilized to im-
prove the search still requiring valuation bases of inconstant size. Yet due
to its confined constraint settings [54] was able to introduce a way to check
patterns without the use of such a valuation bases. It may be possible to
derive an algorithm applying a similar approach to the more general prob-
lem setting of descriptive pattern mining. As such methods come at certain
overhead the performance variations are difficult to guess. There are also
improvements on the TFP algorithm from [54] that are worth to be taken
into consideration (cf. [51]).

Community mining was also formalized using valuation bases that are
not of constant size (see Section 4.1.2). In combination with the GP-Tree
structures this leads to exponential growth of space requirements. To solve
this problem it may be possible to use a link structure between valuation
bases associated with parent and child nodes in the tree.
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Further optimizations concerning the underlying data structures are pos-
sible. For example bitset representations of datasets [40] yield a better per-
formance on dense data while the GP-Tree structure works well on sparse
data. Thus a combination of both can improve the efficiency of respective
algorithms. Also, as datasets grow the data structure instances can exceed
the size of available memory. According measures need to be taken.

As performance is an important issue in descriptive pattern mining it
is inevitable to develop mechanisms that allow for parallelization. [42] is a
particularly interesting approach due to its simplicity and will be further in-
vestigated. As known from other work, like [52], dynamic constraints pose the
main problem especially due to dynamic branching order. Yet first inquiries
showed that it is possible to derive an algorithm guaranteeing sequential
runtime with minimal communication costs.

When introducing dynamic constraints the item and branching orders
are important to process a descriptive pattern mining instance efficiently.
Other optimizations like exploiting the ExAnte property can also increase or
decrease efficiency depending on the data being provided. Thus a challenging
subject of further work is to create an algorithm that learns how to set such
parameters dependent on the given data by taking the descriptive pattern
mining instances it has processed into account.

A similar approach to define a generic framework for pattern mining has
been proposed by [39], yet lacks an equivalent to the notion of valuation bases
and does not propose an efficient algorithm to solve the generally stated pat-
tern mining problem. On the other hand many models for pattern evaluation
are reviewed. This raises the question whether these problem settings can
be formulated using valuation bases and how efficiently they can be solved
by the AnEMonE algorithm or respective enhancements.
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[30] Henrik Grosskreutz, Stefan Rüping, and Stefan Wrobel. Tight opti-
mistic estimates for fast subgroup discovery. In Proceedings of the 2008
European Conference on Machine Learning and Knowledge Discovery in
Databases - Part I, ECML PKDD ’08, pages 440–456, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[31] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: an
update. SIGKDD Explor. Newsl., 11:10–18, November 2009.

[32] Jiawei Han and Micheline Kamber. Data mining: concepts and tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2000.

[33] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree ap-
proach. Data Mining and Knowledge Discovery, 8:53–87, 2004.

[34] Baptiste Jeudy and Jean-François Boulicaut. Optimization of associa-
tion rule mining queries. Intell. Data Anal., 6:341–357, September 2002.

[35] Willi Klösgen. Explora: a multipattern and multistrategy discovery
assistant. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth, and Ramasamy Uthurusamy, editors, Advances in knowledge
discovery and data mining, pages 249–271. American Association for
Artificial Intelligence, Menlo Park, CA, USA, 1996.

[36] W. Klösgen and J. Zytkow. Handbook of data mining and knowledge
discovery. Oxford University Press, Oxford, 2002.



BIBLIOGRAPHY 167

[37] Laks V. S. Lakshmanan, Raymond Ng, Jiawei Han, and Alex Pang. Op-
timization of constrained frequent set queries with 2-variable constraints.
In Proceedings of the 1999 ACM SIGMOD international conference on
Management of data, SIGMOD ’99, pages 157–168, New York, NY,
USA, 1999. ACM.
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